Huw Taylor
University of Brighton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huw Taylor.
International Journal of Food Microbiology | 2003
Inger Kühn; Aina Iversen; Lars G. Burman; Barbro Olsson-Liljequist; A. Franklin; Maria Finn; Frank Møller Aarestrup; Anne Mette Seyfarth; Anicet R. Blanch; X. Vilanova; Huw Taylor; Jonathan Caplin; Miguel A. Moreno; Lucas Domínguez; Inmaculada Herrero; Roland Möllby
The objectives of the present study were to generate knowledge of enterococcal populations in the food chain, by studying the population structure (in measures of abundance and diversity) among enterococci in different geographical regions and in different parts of the food chain, as well as the similarities between different enterococcal populations. Altogether, 2868 samples were collected from humans (healthy and hospitalised individuals and clinical isolates), animals (slaughterhouse carcasses and farm animals), and the environment (pig farms, sewage, and surface water) in four European countries-Sweden, Denmark, UK, and Spain. The samples were characterised with regard to presence and numbers of enterococci, and eight (for faecal samples) or 24 (for environmental samples) isolates per sample were phenotyped and preliminarily identified with the PhP-RF system. In total, more than 20,000 isolates were typed. A majority of the samples (77%) showed the presence of presumed enterococci. The diversities of enterococci in environmental samples were generally high, and also faecal samples normally showed presence of more than one enterococcal strain. The most common species found were Enterococcus faecium (33%), E. faecalis (29%), and E. hirae (24%), but different enterococcal populations differed in their species distribution. Clinical isolates, hospitalised patients, and hospital sewage in Sweden showed a clear dominance of E. faecalis (80%, 57%, and 54%, respectively) whereas healthy individuals and urban sewage contained less E. faecalis (39% and 40%, respectively). The species distribution among isolates from slaughterhouses varied between animal species and also between countries, but E. faecalis seemed to be mainly associated with broiler, and E. hirae with cattle and pigs. The results from the study have indicated a simplified method to study the diversity of bacterial populations. Instead of collecting many samples and analysing one or a few isolates per sample, it is possible to collect fewer samples and analyse several isolates per sample. Both approaches yielded similar information on the diversity of the populations. Another useful information was that since samples from hospital sewage, urban sewage, and manure contained enterococcal populations that reflected those in faecal samples of hospitalised patients, healthy humans, and animals, respectively, such samples may be used as pooled faecal samples and may replace cumbersome samplings from many individuals.
Applied and Environmental Microbiology | 2006
Anicet R. Blanch; Lluís A. Belanche-Muñoz; Xavier Bonjoch; James Ebdon; Christophe Gantzer; F. Lucena; Jakob Ottoson; Christos Kourtis; Aina Iversen; Inger Kühn; Laura Mocé; Maite Muniesa; Janine Schwartzbrod; Sylvain Skraber; Georgios T. Papageorgiou; Huw Taylor; J.L. Wallis; J. Jofre
ABSTRACT Several microbes and chemicals have been considered as potential tracers to identify fecal sources in the environment. However, to date, no one approach has been shown to accurately identify the origins of fecal pollution in aquatic environments. In this multilaboratory study, different microbial and chemical indicators were analyzed in order to distinguish human fecal sources from nonhuman fecal sources using wastewaters and slurries from diverse geographical areas within Europe. Twenty-six parameters, which were later combined to form derived variables for statistical analyses, were obtained by performing methods that were achievable in all the participant laboratories: enumeration of fecal coliform bacteria, enterococci, clostridia, somatic coliphages, F-specific RNA phages, bacteriophages infecting Bacteroides fragilis RYC2056 and Bacteroides thetaiotaomicron GA17, and total and sorbitol-fermenting bifidobacteria; genotyping of F-specific RNA phages; biochemical phenotyping of fecal coliform bacteria and enterococci using miniaturized tests; specific detection of Bifidobacterium adolescentis and Bifidobacterium dentium; and measurement of four fecal sterols. A number of potentially useful source indicators were detected (bacteriophages infecting B. thetaiotaomicron, certain genotypes of F-specific bacteriophages, sorbitol-fermenting bifidobacteria, 24-ethylcoprostanol, and epycoprostanol), although no one source identifier alone provided 100% correct classification of the fecal source. Subsequently, 38 variables (both single and derived) were defined from the measured microbial and chemical parameters in order to find the best subset of variables to develop predictive models using the lowest possible number of measured parameters. To this end, several statistical or machine learning methods were evaluated and provided two successful predictive models based on just two variables, giving 100% correct classification: the ratio of the densities of somatic coliphages and phages infecting Bacteroides thetaiotaomicron to the density of somatic coliphages and the ratio of the densities of fecal coliform bacteria and phages infecting Bacteroides thetaiotaomicron to the density of fecal coliform bacteria. Other models with high rates of correct classification were developed, but in these cases, higher numbers of variables were required.
Applied and Environmental Microbiology | 2005
Inger Kühn; Aina Iversen; Maria Finn; Christina Greko; Lars G. Burman; Anicet R. Blanch; X. Vilanova; Albert Manero; Huw Taylor; Jonathan Caplin; Lucas Domínguez; Inmaculada Herrero; Miguel A. Moreno; Roland Möllby
ABSTRACT Vancomycin-resistant enterococcci (VRE) in Europe are thought to have emerged partly due to the use of the glycopeptide avoparcin in animal husbandry. We compared the occurrence of VRE in geographical regions of Europe in which until 1997 large amounts of avoparcin were used (Spain, United Kingdom, and Denmark) with the occurrence of VRE in Sweden, where avoparcin was banned in 1986. We also studied the relatedness between VRE strains from different regions and habitats. In total, 2,580 samples were collected from humans, animals, and the environment (soil, sewage, recipient water). VRE resistant to 20 μg/ml vancomycin were identified in 8.2% of the samples and were found most frequently in raw and treated urban sewage samples (means, 71% and 36% of the samples, respectively), pig manure (17%), and hospital sewage (16%). The proportions of VRE-positive sewage samples were similar in Sweden, Spain, and the United Kingdom, whereas pig feces and manure were more often positive in Spain than in Sweden (30% versus 1%). Most VRE were Enterococcus faecium carrying vanA, and computerized biochemical phenotyping of the isolates of different ecological origins showed a high degree of polyclonality. In conclusion, it seems that animal-associated VRE probably reflect the former use of avoparcin in animal production, whereas VRE in human-associated samples may be a result of antibiotic use in hospitals. Since there seems to be a reservoir of the resistance genes in all countries studied, precautions must be taken to limit the use of antibiotics and antibiotic-like feed additives.
Journal of Applied Microbiology | 2003
Anicet R. Blanch; Jonathan Caplin; Aina Iversen; Inger Kühn; Albert Manero; Huw Taylor; X. Vilanova
Aims: Scarce knowledge about the distribution of enterococci species in wastewaters limits any statement on their reliability as faecal indicators or the implications of antibiotic resistance transmission by these organisms through the water cycle. Enterococci have been involved in nosocomial infections and the spreading of antibiotic resistance through the food chain. The species distribution of enterococci and the presence of resistant strains to vancomycin and erythromycin were analysed in more than 400 raw and treated urban wastewaters, surface waters receiving these treated wastewaters and hospital wastewaters from three European countries.
Applied and Environmental Microbiology | 2005
Andrey Payán; James Ebdon; Huw Taylor; Christophe Gantzer; Jakob Ottoson; Georgos T. Papageorgiou; Anicet R. Blanch; F. Lucena; Juan Jofre; Maite Muniesa
ABSTRACT Bacteriophages infecting Bacteroides are potentially a good tool for fecal source tracking, but different Bacteroides host strains are needed for different geographic areas. A feasible method for isolating Bacteroides host strains for phages present in human fecal material is described. Useful strains were identified for application in Spain and the United Kingdom. One strain, GA-17, identified as Bacteroides thetaiotaomicron, was tested in several locations in Europe with excellent performance in Southern Europe.
International Journal of Antimicrobial Agents | 2000
Inger Kühn; Aina Iversen; Lars G. Burman; Barbro Olsson-Liljequist; A. Franklin; Maria Finn; Frank Møller Aarestrup; Anne Mette Seyfarth; Anicet R. Blanch; Huw Taylor; Jonathan Caplin; Miguel A. Moreno; Lucas Domínguez; Roland Möllby
The objectives of the present study are to generate knowledge of the ecology and epidemiology of enterococci in the food chain by studying the following: (1) the population structure (in measures of abundance, number of vancomycin resistant strains, antibiotic resistance patterns, diversity, and stability) among enterococcal populations in different geographical regions and in different links of the food chain (2) possible transmission of strains through the food chain and between hospital environments and the food chain (3) the association between vancomycin resistance and individual strains of enterococci and (4) the diversity of the drug resistance genes in enterococci. So far, 1578 samples have been collected from different countries within the EU (Sweden, Denmark, UK and Spain), and from different habitats (pig farms, carcasses in slaughter houses, soil, manure, water, sewage, and humans). Total and vancomycin resistant enterococcal populations in each sample have been enumerated and more than 12000 isolates have been characterised by phenotyping. Representative isolates are further species identified and characterised by genotyping and MIC determination and from antibiotic resistant isolates the resistance genes are characterised.
Water Research | 2013
Valerie J. Harwood; Alexandria B. Boehm; Lauren M. Sassoubre; Kannappan Vijayavel; Jill R. Stewart; Theng Theng Fong; Marie Paule Caprais; Reagan R. Converse; David Diston; James Ebdon; Jed A. Fuhrman; Michele Gourmelon; Jennifer Gentry-Shields; John F. Griffith; Donna R. Kashian; Rachel T. Noble; Huw Taylor; Melanie Wicki
An inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination. Human viruses used as source identifiers included adenoviruses (HAdV), enteroviruses (EV), norovirus Groups I and II (NoVI and NoVII), and polyomaviruses (HPyVs). Bacteriophages were also employed, including somatic coliphages and F-specific RNA bacteriophages (FRNAPH) as general indicators of fecal contamination. Bacteriophage methods targeting human fecal sources included genotyping of FRNAPH isolates and plaque formation on bacterial hosts Enterococcus faecium MB-55, Bacteroides HB-73 and Bacteroides GB-124. The use of small sample volumes (≤50 ml) resulted in relatively insensitive theoretical limits of detection (10-50 gene copies or plaques × 50 ml(-1)) which, coupled with low virus concentrations in samples, resulted in high false-negative rates, low sensitivity, and low negative predictive values. On the other hand, the specificity of the human virus methods was generally close to 100% and positive predictive values were ∼40-70% with the exception of NoVs, which were not detected. The bacteriophage methods were generally much less specific toward human sewage than virus methods, although FRNAPH II genotyping was relatively successful, with 18% sensitivity and 85% specificity. While the specificity of the human virus methods engenders great confidence in a positive result, better concentration methods and larger sample volumes must be utilized for greater accuracy of negative results, i.e. the prediction that a human contamination source is absent.
Environmental Science & Technology | 2013
Georg H. Reischer; James Ebdon; Johanna M. Bauer; Nathalie Schuster; Warish Ahmed; Johan Åström; Anicet R. Blanch; Günter Blöschl; Denis Byamukama; Tricia Coakley; Christobel M. Ferguson; Goraw Goshu; GwangPyo Ko; Ana Maria de Roda Husman; Douglas Mushi; Ramiro Poma; Bandana Pradhan; Verónica Beatriz Rajal; Margit Schade; Regina Sommer; Huw Taylor; Erika M. Tóth; Virgil Vrajmasu; Stefan Wuertz; Robert L. Mach; Andreas H. Farnleitner
Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods.
Nature Communications | 2013
Lesley A. Ogilvie; Lucas D. Bowler; Jonathan Caplin; Cinzia Dedi; David Diston; Elizabeth Cheek; Huw Taylor; James Ebdon; Brian V. Jones
Bacterial viruses (bacteriophages) have a key role in shaping the development and functional outputs of host microbiomes. Although metagenomic approaches have greatly expanded our understanding of the prokaryotic virosphere, additional tools are required for the phage-oriented dissection of metagenomic data sets, and host-range affiliation of recovered sequences. Here we demonstrate the application of a genome signature-based approach to interrogate conventional whole-community metagenomes and access subliminal, phylogenetically targeted, phage sequences present within. We describe a portion of the biological dark matter extant in the human gut virome, and bring to light a population of potentially gut-specific Bacteroidales-like phage, poorly represented in existing virus like particle-derived viral metagenomes. These predominantly temperate phage were shown to encode functions of direct relevance to human health in the form of antibiotic resistance genes, and provided evidence for the existence of putative ‘viral-enterotypes’ among this fraction of the human gut virome.
Water Research | 2001
Pascal Beaudeau; Nicolas Tousset; Franck Bruchon; Amélie Lefèvre; Huw Taylor
Numerous studies have been carried out on the environmental factors associated with the decay of faecal bacteria in open (fresh or marine) waters. The present study aimed at understanding the fate of bacteria in small streams (flow <20 m3 s(-1)) for which there is a lack of knowledge. An original in situ protocol was developed for measuring the die-off of Escherichia coli (E. coli) from wastewater treatment plants. Based upon 80 values of the decay first-order parameter (K or its inverse T90), collected from five rivers in Normandy (France), a median T90 of 10 h and a minimal T90 of 1.3 h were obtained. K was then modelled as a linear function of variables made up from flow, water temperature and suspended particulate matter (SPM). The set of significant co-variables did not include light indicators. E. coli decay is inversely related to the river flow and it becomes highly significant below 0.3 m3 s(-1). The positive effect of small flows on die-off is increased by water temperature over 15 degrees C, whereas it could be reduced by SPM. The major co-variable of the model (p < 10(-9)) is an empiric composite variable integrating the effect of flow and temperature that explains more than 40% of the variance of K. We interpreted this as an expression of predation by benthic micro-grazers which could be the main cause of E. coli die-off in small streams in temperate countries.