Huy Quan Vu
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huy Quan Vu.
Information & Management | 2017
Shah Jahan Miah; Huy Quan Vu; G. Michael McGrath
Abstract Big data generated across social media sites have created numerous opportunities for bringing more insights to decision-makers. Few studies on big data analytics, however, have demonstrated the support for strategic decision-making. Moreover, a formal method for analysing social media-generated big data for decision support is yet to be developed, particularly in the tourism sector. Using a design science research approach, this study aims to design and evaluate a ‘big data analytics’ method to support strategic decision-making in tourism destination management. Using geotagged photos uploaded by tourists to the photo-sharing social media site, Flickr, the applicability of the method in assisting destination management organisations to analyse and predict tourist behavioural patterns at specific destinations is shown, using Melbourne, Australia, as a representative case. Utility was confirmed using both another destination and directly with stakeholder audiences. The developed artefact demonstrates a method for analysing unstructured big data to enhance strategic decision making within a real problem domain. The proposed method is generic, and its applicability to other big data streams is discussed.
systems man and cybernetics | 2012
Huy Quan Vu; Gang Li; Nadezda Sukhorukova; Gleb Beliakov; Shaowu Liu; Carole Philippe; Hélène Amiel; Adrien Ugon
Sleep stage identification is the first step in modern sleep disorder diagnostics process. K-complex is an indicator for the sleep stage 2. However, due to the ambiguity of the translation of the medical standards into a computer-based procedure, reliability of automated K-complex detection from the EEG wave is still far from expectation. More specifically, there are some significant barriers to the research of automatic K-complex detection. First, there is no adequate description of K-complex that makes it difficult to develop automatic detection algorithm. Second, human experts only provided the label for whether a whole EEG segment contains K-complex or not, rather than individual labels for each subsegment. These barriers render most pattern recognition algorithms inapplicable in detecting K-complex. In this paper, we attempt to address these two challenges, by designing a new feature extraction method that can transform visual features of the EEG wave with any length into mathematical representation and proposing a hybrid-synergic machine learning method to build a K-complex classifier. The tenfold cross-validation results indicate that both the accuracy and the precision of this proposed model are at least as good as a human expert in K-complex detection.
IEEE Transactions on Fuzzy Systems | 2015
Gleb Beliakov; Gang Li; Huy Quan Vu; Tim Wilkin
Certain tasks in image processing require the preservation of fine image details, while applying a broad operation to the image, such as image reduction, filtering, or smoothing. In such cases, the objects of interest are typically represented by small, spatially cohesive clusters of pixels which are to be preserved or removed, depending on the requirements. When images are corrupted by the noise or contain intensity variations generated by imaging sensors, identification of these clusters within the intensity space is problematic as they are corrupted by outliers. This paper presents a novel approach to accounting for spatial organization of the pixels and to measuring the compactness of pixel clusters based on the construction of fuzzy measures with specific properties: monotonicity with respect to the cluster size; invariance with respect to translation, reflection, and rotation; and discrimination between pixel sets of fixed cardinality with different spatial arrangements. We present construction methods based on Sugeno-type fuzzy measures, minimum spanning trees, and fuzzy measure decomposition. We demonstrate their application to generating fuzzy measures on real and artificial images.
Journal of Travel Research | 2018
Huy Quan Vu; Gang Li; Rob Law; Yanchun Zhang
Because of the inefficiency in analyzing the comprehensive travel data, tourism managers are facing the challenge of gaining insights into travelers’ behavior and preferences. In most cases, existing techniques are incapable of capturing the sequential patterns hidden in travel data. To address these issues, this article proposes to analyze the travelers’ behavior through geotagged photos and sequential rule mining. Travel diaries, constructed from the photo sequences, can capture comprehensive travel information, and then sequential patterns can be discovered to infer the potential destinations. The effectiveness of the proposed framework is demonstrated in a case study of Australian outbound tourism, using a data set of more than 890,000 photos from 3,623 travelers. The introduced framework has the potential to benefit tourism researchers and practitioners from capturing and understanding the behaviors and preferences of travelers. The findings can support destination-marketing organizations (DMOs) in promoting appropriate destinations to prospective travelers.
international acm sigir conference on research and development in information retrieval | 2010
Jinlong Wang; Shunyao Wu; Huy Quan Vu; Gang Li
One reason for semi-supervised clustering fail to deliver satisfactory performance in document clustering is that the transformed optimization problem could have many candidate solutions, but existing methods provide no mechanism to select a suitable one from all those candidates. This paper alleviates this problem by posing the same task as a soft-constrained optimization problem, and introduces the salient degree measure as an information guide to control the searching of an optimal solution. Experimental results show the effectiveness of the proposed method in the improvement of the performance, especially when the amount of priori domain knowledge is limited.
acm/ieee joint conference on digital libraries | 2010
Shunyao Wu; Jinlong Wang; Huy Quan Vu; Gang Li
Important words, which usually exist in part of Title, Subject and Keywords, can briefly reflect the main topic of a document. In recent years, it is a common practice to exploit the semantic topic of documents and utilize important words to achieve document clustering, especially for short texts such as news articles. This paper proposes a novel method to extract important words from Subject and Keywords of articles, and then partition documents only with those important words. Considering the fact that frequencies of important words are usually low and the scale matrix dataset for important words is small, a normalization method is then proposed to normalize the scale dataset so that more accurate results can be achieved by sufficiently exploiting the limited information. The experiments validate the effectiveness of our method.
ieee international conference on fuzzy systems | 2014
Gleb Beliakov; Gang Li; Huy Quan Vu; Tim Wilkin
Pixel-scale fine details are often lost during image processing tasks such as image reduction and filtering. Block or region based algorithms typically rely on averaging functions to implement the required operation and traditional function choices struggle to preserve small, spatially cohesive clusters of pixels which may be corrupted by noise. This article proposes the construction of fuzzy measures of cluster compactness to account for the spatial organisation of pixels. We present two construction methods (minimum spannning trees and fuzzy measure decomposition) to generate measures with specific properties: monotonicity with respect to cluster size; invariance with respect to translation, reflection and rotation; and, discrimination between pixel sets of fixed cardinality with different spatial arrangements. We apply these measures within a non-monotonic mode-like averaging function used for image reduction and we show that this new function preserves pixel-scale structures better than existing monotonie averages.
Journal of Networks | 2012
Huy Quan Vu; Shaowu Liu; Xinghua Yang; Zhi Li; Yongli Ren
Rapid growth of technical developments has created huge challenges for microphone forensics - a sub-category of audio forensic science, because of the availability of numerous digital recording devices and massive amount of recording data. Demand for fast and efficient methods to assure integrity and authenticity of information is becoming more and more important in criminal investigation nowadays. Machine learning has emerged as an important technique to support audio analysis processes of microphone forensic practitioners. However, its application to real life situations using supervised learning is still facing great challenges due to expensiveness in collecting data and updating system. In this paper, we introduce a new machine learning approach which is called One-class Classification (OCC) to be applied to microphone forensics; we demonstrate its capability on a corpus of audio samples collected from several microphones. In addition, we propose a representative instance classification framework (RICF) that can effectively improve performance of OCC algorithms for recording signal with noise. Experiment results and analysis indicate that OCC has the potential to benefit microphone forensic practitioners in developing new tools and techniques for effective and efficient analysis.
Archive | 2016
Rosanna Leung; Huy Quan Vu; Jia Rong; Yuan Miao
Travel statistics report published by the tourism board was one of the important sources that attraction managers used to plan for marketing strategies. However, only a limited number of famous attractions were involved in such reports, therefore rare information was gathered for 2nd or 3rd tier attractions, such as temples. These small attractions were kept away from many tourists’ knowledge or travel plan so that it is also a difficulty to explore their visit behaviors. Fortunately, social media sites have been rapidly developed and widely used in our lives, to fill this blank with a large number of active users, who shared their travel experiences by writing textual comments and uploading travel photos. This provides scholars and managers with opportunities to understand tourists’ behaviors and the potential attractions they are interested in, by analyzing the photos they uploaded and shared online. In this paper, we report a study of extracting geotagged photos uploaded by tourists to one of the popular social media sites, Flickr, for tourists’ visit and sharing behavior analysis of Hong Kong temples. The results indicate four popular temples that attracted most tourists taking photos. The behavior analysis shows the difference preferences of tourists from various locations and the trend changes of their visits in the past 5 years.
ieee international conference on fuzzy systems | 2012
Huy Quan Vu; Gang Li; Gleb Beliakov
The explosion of the Web 2:0 platforms, with massive volume of user generated data, has presented many new opportunities as well as challenges for organizations in understanding consumers behavior to support for business planning process. Feature based sentiment mining has been an emerging area in providing tools for automated opinion discovery and summarization to help business managers with achieving such goals. However, the current feature based sentiment mining systems were only able to provide some forms of sentiments summary with respect to product features, but impossible to provide insight into the decision making process of consumers. In this paper, we will present a relatively new decision support method based on Choquet Integral aggregation function, Shapley value and Interaction Index which is able to address such requirements of business managers. Using a study case of Hotel industry, we will demonstrate how this technique can be applied to effectively model the users preference of (hotel) features. The presented method has potential to extend the practical capability of sentiment mining area, while, research findings and analysis are useful in helping business managers to define new target customers and to plan more effective marketing strategies.