Huyuan Chen
Jiangxi Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huyuan Chen.
Asymptotic Analysis | 2014
Huyuan Chen; Laurent Veron
Let p ∈ (0, N N−2α ), α ∈ (0, 1) and Ω ⊂ R be a bounded C domain containing 0. If δ0 is the Dirac measure at 0 and k > 0, we prove that the weakly singular solution uk of (Ek) (−∆) u+u = kδ0 in Ω which vanishes in Ω, is a classical solution of (E∗) (−∆) u+u = 0 in Ω\{0} with the same outer data. When 2α N−2α ≤ 1 + 2α N , p ∈ (0, 1 + 2α N ] we show that the uk converges to ∞ in whole Ω when k → ∞, while, for p ∈ (1 + 2α N , N N−2α ), the limit of the uk is a strongly singular solution of (E∗). The same result holds in the case 1 + 2α N < 2α N−2α excepted if 2α N < p < 1 + 2α N .
Journal of The London Mathematical Society-second Series | 2018
Huyuan Chen; Alexander Quaas
In this paper, we classify the singularities of nonnegative solutions to fractional elliptic equation \begin{equation}\label{eq 0.1} \arraycolsep=1pt \begin{array}{lll} \displaystyle (-\Delta)^\alpha u=u^p\quad &{\rm in}\quad \Omega\setminus\{0\},\\[2mm] \phantom{ (-\Delta)^\alpha } \displaystyle u=0\quad &{\rm in}\quad \mathbb{R}^N\setminus\Omega, \end{array} \end{equation} where
Complex Variables and Elliptic Equations | 2017
Huyuan Chen; Suad Alhomedan; Hichem Hajaiej; Peter A. Markowich
p>1
Applicable Analysis | 2018
Huyuan Chen; Suad Alhomedan; Hichem Hajaiej; Peter A. Markowich
,
Journal of Differential Equations | 2014
Huyuan Chen; Laurent Veron
\Omega
Annales De L Institut Henri Poincare-analyse Non Lineaire | 2015
Huyuan Chen; Patricio Felmer; Alexander Quaas
is a bounded,
Journal of Functional Analysis | 2014
Huyuan Chen; Laurent Veron
C^2
Journal of Differential Equations | 2013
Huyuan Chen; Patricio Felmer
domain in
arXiv: Analysis of PDEs | 2014
Laurent Veron; Huyuan Chen; Patricio Felmer
\mathbb{R}^N
arXiv: Analysis of PDEs | 2013
Huyuan Chen; Laurent Veron
containing the origin,