Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwa-Lung Yu is active.

Publication


Featured researches published by Hwa-Lung Yu.


Environmental Health Perspectives | 2009

BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

Hwa-Lung Yu; Jiu-Chiuan Chen; George Christakos; Michael Jerrett

Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable.


Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring | 2015

Association between air pollutants and dementia risk in the elderly

Yun-Chun Wu; Yuan-Chien Lin; Hwa-Lung Yu; Jen-Hau Chen; Ta-Fu Chen; Yu Sun; Li-Li Wen; Ping-Keung Yip; Yi-Min Chu; Yen-Ching Chen

The aging rate in Taiwan is the second highest in the world. As the population ages quickly, the prevalence of dementia increases rapidly. There are some studies that have explored the association between air pollution and cognitive decline, but the association between air pollution and dementia has not been directly evaluated.


Environmental Health Perspectives | 2012

Estimated Effects of Asian Dust Storms on Spatiotemporal Distributions of Clinic Visits for Respiratory Diseases in Taipei Children (Taiwan)

Lung Chang Chien; Chiang Hsing Yang; Hwa-Lung Yu

Background: Increases in certain cause-specific hospital admissions have been reported during Asian dust storms (ADS), which primarily originate from north and northwest China during winter and spring. However, few studies have investigated the relationship between the ADS and clinic visits for respiratory diseases in children. Objective: We investigated the general impact to children’s health across space and time by analyzing daily clinic visits for respiratory diseases among preschool and schoolchildren registered in 12 districts of Taipei City during 1997–2007 from the National Health Insurance dataset. Methods: We applied a structural additive regression model to estimate the association between ADS episodes and children’s clinic visits for respiratory diseases, controlling for space and time variations. Results: Compared with weeks before ADS events, the rate of clinic visits during weeks after ADS events increased 2.54% (95% credible interval = 2.43, 2.66) for preschool children (≤ 6 years of age) and 5.03% (95% credible interval = 4.87, 5.20) for schoolchildren (7–14 years of age). Spatial heterogeneity in relative rates of clinic visits was also identified. Compared with the mean level of Taipei City, higher relative rates appeared in districts with or near large hospitals and medical centers. Conclusion: To our knowledge, this is the first population-based study to assess the impact of ADS on children’s respiratory health. Our analysis suggests that children’s respiratory health was affected by ADS events across all of Taipei, especially among schoolchildren.


International Journal of Environmental Research and Public Health | 2011

Assessment of Water Quality in a Subtropical Alpine Lake Using Multivariate Statistical Techniques and Geostatistical Mapping: A Case Study

Wen-Cheng Liu; Hwa-Lung Yu; Chung-En Chung

Concerns about the water quality in Yuan-Yang Lake (YYL), a shallow, subtropical alpine lake located in north-central Taiwan, has been rapidly increasing recently due to the natural and anthropogenic pollution. In order to understand the underlying physical and chemical processes as well as their associated spatial distribution in YYL, this study analyzes fourteen physico-chemical water quality parameters recorded at the eight sampling stations during 2008–2010 by using multivariate statistical techniques and a geostatistical method. Hierarchical clustering analysis (CA) is first applied to distinguish the three general water quality patterns among the stations, followed by the use of principle component analysis (PCA) and factor analysis (FA) to extract and recognize the major underlying factors contributing to the variations among the water quality measures. The spatial distribution of the identified major contributing factors is obtained by using a kriging method. Results show that four principal components i.e., nitrogen nutrients, meteorological factor, turbidity and nitrate factors, account for 65.52% of the total variance among the water quality parameters. The spatial distribution of principal components further confirms that nitrogen sources constitute an important pollutant contribution in the YYL.


PLOS ONE | 2012

Asian dust storm elevates children's respiratory health risks: a spatiotemporal analysis of children's clinic visits across Taipei (Taiwan)

Hwa-Lung Yu; Lung Chang Chien; Chiang Hsing Yang

Concerns have been raised about the adverse impact of Asian dust storms (ADS) on human health; however, few studies have examined the effect of these events on children’s health. Using databases from the Taiwan National Health Insurance and Taiwan Environmental Protection Agency, this study investigates the documented daily visits of children to respiratory clinics during and after ADS that occurred from 1997 to 2007 among 12 districts across Taipei City by applying a Bayesian structural additive regressive model controlled for spatial and temporal patterns. This study finds that the significantly impact of elevated children’s respiratory clinic visits happened after ADS. Five of the seven lagged days had increasing percentages of relative rate, which was consecutively elevated from a 2-day to a 5-day lag by 0.63%∼2.19% for preschool children (i.e., 0∼6 years of age) and 0.72%∼3.17% for school children (i.e., 7∼14 years of age). The spatial pattern of clinic visits indicated that geographical heterogeneity was possibly associated with the clinic’s location and accessibility. Moreover, day-of-week effects were elevated on Monday, Friday, and Saturday. We concluded that ADS may significantly increase the risks of respiratory diseases consecutively in the week after exposure, especially in school children.


Environment International | 2014

Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence

Lung Chang Chien; Hwa-Lung Yu

Dengue fever is one of the most widespread vector-borne diseases and has caused more than 50 million infections annually over the world. For the purposes of disease prevention and climate change health impact assessment, it is crucial to understand the weather-disease associations for dengue fever. This study investigated the nonlinear delayed impact of meteorological conditions on the spatiotemporal variations of dengue fever in southern Taiwan during 1998-2011. We present a novel integration of a distributed lag nonlinear model and Markov random fields to assess the nonlinear lagged effects of weather variables on temporal dynamics of dengue fever and to account for the geographical heterogeneity. This study identified the most significant meteorological measures to dengue fever variations, i.e., weekly minimum temperature, and the weekly maximum 24-hour rainfall, by obtaining the relative risk (RR) with respect to disease counts and a continuous 20-week lagged time. Results show that RR increased as minimum temperature increased, especially for the lagged period 5-18 weeks, and also suggest that the time to high disease risks can be decreased. Once the occurrence of maximum 24-hour rainfall is >50 mm, an associated increased RR lasted for up to 15 weeks. A temporary one-month decrease in the RR of dengue fever is noted following the extreme rain. In addition, the elevated incidence risk is identified in highly populated areas. Our results highlight the high nonlinearity of temporal lagged effects and magnitudes of temperature and rainfall on dengue fever epidemics. The results can be a practical reference for the early warning of dengue fever.


International Journal of Environmental Research and Public Health | 2011

Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods

Hwa-Lung Yu; Chih-Hsih Wang; Ming-Che Liu; Yi-Ming Kuo

Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007.


International Journal of Health Geographics | 2006

Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.

Hwa-Lung Yu; George Christakos

BackgroundThis work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics.ResultsInformative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers.ConclusionModern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases.


Environmental Science & Technology | 2013

Quantile-Based Bayesian Maximum Entropy Approach for Spatiotemporal Modeling of Ambient Air Quality Levels

Hwa-Lung Yu; Chih-Hsin Wang

Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.


Environment International | 2013

Spatial vulnerability under extreme events: a case of Asian dust storm's effects on children's respiratory health.

Hwa-Lung Yu; Chiang Hsing Yang; Lung Chang Chien

Asian dust storm (ADS) events have raised concerns regarding their adverse impact on human health. Whether ADS events can result in the heterogeneity of health impacts on children across space and time has not been studied. The goal of this study is to examine the spatial vulnerability impact of ADS events on childrens respiratory health geographically and to analyze any patterns related to ADS episodes. From 1998 to 2007, data from both preschool childrens and schoolchildrens daily respiratory clinic visits, gathered from patients located in 41 districts of Taipei City and New Taipei City, are analyzed in a Bayesian spatiotemporal model in order to investigate the interaction between spatial effects and ADS episodes. When adjusting for the temporal effect, air pollutants, and temperature, the spatial pattern explicitly varies during defined study periods: non-ADS periods, ADS periods, and post-ADS periods. Compared to non-ADS periods, the relative rate of childrens respiratory clinic visits significantly reduced 0.74 to 0.99 times in most districts during ADS periods, while the relative rate rose from 1.01 to 1.11 times in more than half of districts during post-ADS periods, especially in schoolchildren. This spatial vulnerability denotes that the significantly increased relative rate of respiratory clinic visits during post-ADS periods is primarily located in highly urbanized areas for both childrens populations. Hence, the results of this study suggest that schoolchildren are particularly more vulnerable to the health impacts of ADS exposure in terms of higher excessive risks over a larger spatial extent than preschool children, especially during post-ADS periods.

Collaboration


Dive into the Hwa-Lung Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lung Chang Chien

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yi-Ming Kuo

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Yuan-Chien Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hone Jay Chu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Alexander Kolovos

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jen-Hau Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ping-Keung Yip

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Ta-Fu Chen

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge