Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwa Seung Han is active.

Publication


Featured researches published by Hwa Seung Han.


Biomaterials | 2014

Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery

Thavasyappan Thambi; V. G. Deepagan; Hong Yeol Yoon; Hwa Seung Han; Seol Hee Kim; Soyoung Son; Dong Gyu Jo; Cheol Hee Ahn; Yung Doug Suh; Kwangmeyung Kim; Ick Chan Kwon; Doo Sung Lee; Jae Hyung Park

Hypoxia is a condition found in various intractable diseases. Here, we report self-assembled nanoparticles which can selectively release the hydrophobic agents under hypoxic conditions. For the preparation of hypoxia-responsive nanoparticles (HR-NPs), a hydrophobically modified 2-nitroimidazole derivative was conjugated to the backbone of the carboxymethyl dextran (CM-Dex). Doxorubicin (DOX), a model drug, was effectively encapsulated into the HR-NPs. The HR-NPs released DOX in a sustained manner under the normoxic condition (physiological condition), whereas the drug release rate remarkably increased under the hypoxic condition. From in vitro cytotoxicity tests, it was found the DOX-loaded HR-NPs showed higher toxicity to hypoxic cells than to normoxic cells. Microscopic observation showed that the HR-NPs could effectively deliver DOX into SCC7 cells under hypoxic conditions. In vivo biodistribution study demonstrated that HR-NPs were selectively accumulated at the hypoxic tumor tissues. As consequence, drug-loaded HR-NPs exhibited high anti-tumor activity in vivo. Overall, the HR-NPs might have a potential as nanocarriers for drug delivery to treat hypoxia-associated diseases.


Journal of Controlled Release | 2013

Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect on tumor targetability in vivo

Hwa Seung Han; Jungmin Lee; Hyun Ryoung Kim; Su Young Chae; Minwoo Kim; Gurusamy Saravanakumar; Hong Yeol Yoon; Dong Gil You; Hyewon Ko; Kwangmeyung Kim; Ick Chan Kwon; Jae Chan Park; Jae Hyung Park

The in vivo stability and tumor targetability of self-assembled polymeric nanoparticles are crucial for effective drug delivery. In this study, to develop biostable nanoparticles with high tumor targetability, poly(ethylene glycol)-conjugated hyaluronic acid nanoparticles (PEG-HANPs) were mineralized through controlled deposition of inorganic calcium and phosphate ions on the nanoparticular shell via a sequential addition method. The resulting nanoparticles (M-PEG-HANPs) had a smaller size (153.7±4.5nm) than bare PEG-HANPs (265.1±9.5nm), implying that mineralization allows the formation of compact nanoparticles. Interestingly, when the mineralized nanoparticles were exposed to acidic buffer conditions (<pH6.5), their sizes increased rapidly due to dissolution of the inorganic minerals. Doxorubicin (DOX), chosen as the model anticancer drug, was effectively encapsulated into the bare and mineralized nanoparticles. For bare PEG-HANPs, DOX was released in a sustained manner and its release rate was not dependent on the pH of the solution. On the other hand, DOX release from M-PEG-HANPs was pH-dependent: i.e. DOX was slowly released from nanoparticles under physiological condition (pH7.4), whereas its release rates were much higher at mildly acidic environments (<pH6.5). From in vivo biodistribution study, it was found that M-PEG-HANPs could reach the tumor site more effectively than bare PEG-HANPs. The antitumor efficacy of DOX-loaded nanoparticles was evaluated after systemic administration into the tumor-bearing mice. Of the samples tested, the most effective antitumor efficacy was observed for DOX-loaded M-PEG-HANPs. Overall, these results suggest that M-PEG-HANPs could be a promising carrier for an anticancer drug.


Advanced Drug Delivery Reviews | 2016

Polysaccharide-based nanoparticles for theranostic nanomedicine.

Maggie Swierczewska; Hwa Seung Han; Kyutae Kim; Jungwoo Park; Se-Jin Lee

Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharide-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs.


Journal of Controlled Release | 2015

Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy.

Hwa Seung Han; Ki Young Choi; Hyewon Ko; Jueun Jeon; Gurusamy Saravanakumar; Yung Doug Suh; Doo Sung Lee; Jae Hyung Park

For drug delivery nanocarriers to be a safe and effective therapeutic option, blood stability, tumor-targetability, and intracellular drug release features should be considered. In this study, to develop a potent drug delivery carrier that can meet the multiple requirements, we engineered a bioreducible core-crosslinked polymeric micelle based on hyaluronic acid (CC-HAM) by a facile method using d,l-dithiothreitol in aqueous conditions. The CC-HAM exhibited enhanced structural stability under diluted conditions with PBS containing FBS or sodium dodecyl sulfates. We also successfully encapsulated doxorubicin (DOX), chosen as a hydrophobic anti-cancer drug, in CC-HAMs with high loading efficiency (>80%). The drug release rate of CC-HAMs was rapidly accelerated in the presence of glutathione, whereas the drug release was significantly retarded in physiological buffer (pH7.4). An in vivo biodistribution study demonstrated the superior tumor targetability of CC-HAMs to that of non-crosslinked HAMs, primarily ascribed to robust stability of CC-HAMs in the bloodstream. Notably, these results correspond with the improved pharmacokinetics and tumor accumulation of DOX-loaded CC-HAMs as well as their excellent therapeutic efficacy. Overall, these results suggest that the robust, bioreducible CC-HAM can be applied as a potent doxorubicin delivery carrier for targeted cancer therapy.


Biomacromolecules | 2015

Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery.

Hwa Seung Han; Thavasyappan Thambi; Ki Young Choi; Soyoung Son; Hyewon Ko; Min Chang Lee; Dong Gyu Jo; Yee Soo Chae; Young Mo Kang; Jun Young Lee; Jae Hyung Park

The major issues of self-assembled nanoparticles as drug carriers for cancer therapy include biostability and tumor-targetability because the premature drug release from and nonspecific accumulation of the drug-loaded nanoparticles may cause undesirable toxicity to normal organs and lower therapeutic efficacy. In this study, we developed robust and tumor-targeted nanocarriers based on an amphiphilic hyaluronic acid (HA)-polycaprolactone (PCL) block copolymer, in which the HA shell was cross-linked via a bioreducible disulfide linkage. Doxorubicin (DOX), chosen as a model anticancer drug, was effectively encapsulated into the nanoparticles with high drug loading efficiency. The DOX-loaded bioreducible HA nanoparticles (DOX-HA-ss-NPs) greatly retarded the drug release under physiological conditions (pH 7.4), whereas the drug release rate was markedly enhanced in the presence of glutathione, a thiol-containing tripeptide capable of reducing disulfide bonds in the cytoplasm. Furthermore, DOX-HA-ss-NPs could effectively deliver the DOX into the nuclei of SCC7 cells in vitro as well as to tumors in vivo after systemic administration into SCC7 tumor-bearing mice, resulting in improved antitumor efficacy in tumor-bearing mice. Overall, it was demonstrated that bioreducible shell-cross-linked nanoparticles could be used as a potential carrier for cancer therapy.


Carbohydrate Polymers | 2014

Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging

Dong Gil You; Gurusamy Saravanakumar; Soyoung Son; Hwa Seung Han; Roun Heo; Kwangmeyung Kim; Ick Chan Kwon; Jun Young Lee; Jae Hyung Park

The hallmark of atherosclerosis in its early pathogenic process is the overexpression of class A scavenger receptors (SR-A) by activated macrophages. In this study, dextran sulfate-coated superparamagnetic iron oxide nanoparticles (DS-SPIONs), as a magnetic resonance (MR) imaging contrast agent of atherosclerosis, was prepared via the facile co-precipitation method using a versatile double-hydrophilic block copolymer comprising of a DS segment (ligand for SR-A) and a poly(glyclerol methacrylate) segment (SPIONs surface-anchoring unit). The physicochemical properties of the DS-SPIONs were investigated using various instruments. DS-SPIONs exhibited high aqueous stability compared to dextran-coated SPIONs (Dex-SPIONs), which were used as controls. The cellular uptake behaviors of DS-SPIONs and Dex-SPIONs were evaluated using Prussian blue assay. Interestingly, the DS-SPIONs were effectively taken up by activated macrophages compared to Dex-SPIONs. However, the cellular uptake of DS-SPIONs by activated macrophages was remarkably reduced in the presence of free DS. These results suggest that activated macrophages internalize DS-SPIONs via receptor (SR-A)-mediated endocytosis. T2-weighted MR imaging of the cells demonstrated that activated macrophages treated with DS-SPIONs showed a significantly lower signal intensity compared to those treated with Dex-SPIONs. Overall, these results suggest that DS-SPIONs may be utilized as a potential contrast agent for atherosclerosis MR imaging.


Advanced Healthcare Materials | 2014

Bioreducible Carboxymethyl Dextran Nanoparticles for Tumor-Targeted Drug Delivery

Thavasyappan Thambi; Dong Gil You; Hwa Seung Han; V. G. Deepagan; Sang Min Jeon; Yung Doug Suh; Ki Young Choi; Kwangmeyung Kim; Ick Chan Kwon; Gi-Ra Yi; Jun Young Lee; Doo Sung Lee; Jae Hyung Park

Bioreducible carboxymethyl dextran (CMD) derivatives are synthesized by the chemical modification of CMD with lithocholic acid (LCA) through a disulfide linkage. The hydrophobic nature of LCA allows the conjugates (CMD-SS-LCAs) to form self-assembled nanoparticles in aqueous conditions. Depending on the degree of LCA substitution, the particle diameters range from 163 to 242 nm. Doxorubicin (DOX), chosen as a model anticancer drug, is effectively encapsulated into the nanoparticles with high loading efficiency (>70%). In vitro optical imaging tests reveal that the fluorescence signal of DOX quenched in the bioreducible nanoparticles is highly recovered in the presence of glutathione (GSH), a tripeptide capable of reducing disulfide bonds in the intracellular compartments. Bioreducible nanoparticles rapidly release DOX when they are incubated with 10 mm GSH, whereas the drug release is greatly retarded in physiological buffer (pH 7.4). DOX-loaded bioreducible nanoparticles exhibit higher toxicity to SCC7 cancer cells than DOX-loaded nanoparticles without the disulfide bond. Confocal laser scanning microscopy observation demonstrate that bioreducible nanoparticles can effectively deliver DOX into the nuclei of SCC7 cells. In vivo biodistribution study indicates that Cy5.5-labeled CMD-SS-LCAs selectively accumulate at tumor sites after systemic administration into tumor-bearing mice. Notably, DOX-loaded bioreducible nanoparticles exhibit higher antitumor efficacy than reduction-insensitive control nanoparticles. Overall, it is evident that bioreducible CMD-SS-LCA nanoparticles are useful as a drug carrier for cancer therapy.


Expert Opinion on Drug Delivery | 2016

Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment.

Rao Nv; Hong Yeol Yoon; Hwa Seung Han; Hyewon Ko; Soyoung Son; Minchang Lee; Hansang Lee; Dong Gyu Jo; Young Mo Kang; Jae Hyung Park

ABSTRACT Introduction: Hyaluronic acid (HA) has emerged as a promising applicant for the tumor-targeted delivery of various therapeutic agents. Because of its biocompatibility, biodegradability and receptor-binding properties, HA has been extensively investigated as the drug delivery carrier. In this review, recent advances in HA-based nanomedicines are discussed. Areas covered: This review focuses on HA-based nanomedicines for the diagnosis and treatment of cancer. In particular, recent advances in HA-drug conjugates and HA-based nanoparticles for small molecular drug delivery are discussed. The bioreducible HA conjugates for small interfering ribonucleic acid delivery have been also discussed. Expert opinion: To develop a successful HA-based nanomedicine, it has to be prepared without significant deterioration of intrinsic property of HA. The chemical modification of HA with drugs or hydrophobic moieties may reduce the binding affinity of HA to the receptors. In addition, since the HA-based nanomedicines tend to accumulate in the liver after their systemic administration, new strategies to overcome this issue have to be developed.


ACS Nano | 2016

Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation

Hwa Seung Han; Ki Young Choi; Hansang Lee; Minchang Lee; Jae Yoon An; Sol Shin; Seunglee Kwon; Doo Sung Lee; Jae Hyung Park

Optically active nanomaterials have shown great promise as a nanomedicine platform for photothermal or photodynamic cancer therapies. Herein, we report a gold-nanoclustered hyaluronan nanoassembly (GNc-HyNA) for photothermally boosted photodynamic tumor ablation. Unlike other supramolecular gold constructs based on gold nanoparticle building blocks, this system utilizes the nanoassembly of amphiphilic hyaluronan conjugates as a drug carrier for a hydrophobic photodynamic therapy agent verteporfin, a polymeric reducing agent, and an organic nanoscaffold upon which gold can grow. Gold nanoclusters were selectively installed on the outer shell of the hyaluronan nanoassembly, forming a gold shell. Given the dual protection effect by the hyaluronan self-assembly as well as by the inorganic gold shell, verteporfin-encapsulated GNc-HyNA (Vp-GNc-HyNA) exhibited outstanding stability in the bloodstream. Interestingly, the fluorescence and photodynamic properties of Vp-GNc-HyNA were considerably quenched due to the gold nanoclusters covering the surface of the nanoassemblies; however, photothermal activation by 808 nm laser irradiation induced a significant increase in temperature, which empowered the PDT effect of Vp-GNc-HyNA. Furthermore, fluorescence and photodynamic effects were recovered far more rapidly in cancer cells due to certain intracellular enzymes, particularly hyaluronidases and glutathione. Vp-GNc-HyNA exerted a great potential to treat tumors both in vitro and in vivo. Tumors were completely ablated with a 100% survival rate and complete skin regeneration over the 50 days following Vp-GNc-HyNA treatment in an orthotopic breast tumor model. Our results suggest that photothermally boosted photodynamic therapy using Vp-GNc-HyNA can offer a potent therapeutic means to eradicate tumors.


Journal of Biomedical Materials Research Part B | 2016

A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy

Hwa Seung Han; Minchang Lee; Jae Yoon An; Soyoung Son; Hyewon Ko; Hansang Lee; Yee Soo Chae; Young Mo Kang; Jae Hyung Park

Although docetaxel is available for the treatment of various cancers, its clinical applications are limited by its poor water solubility and toxicity to normal cells, resulting in severe adverse effects. In this study, we synthesized a polymeric conjugate with an acid-labile ester linkage, consisting of carboxymethyl dextran (CMD) and docetaxel (DTX), as a potential anticancer drug delivery system. The conjugate exhibited sustained release of DTX in physiological buffer (pH 7.4), whereas its release rate increased remarkably under mildly acidic conditions (pH < 6.5), mimicking the intracellular environment. Cytotoxicity tests conducted in vitro demonstrated that the conjugate exhibited much higher toxicity to cancer cells under mildly acidic conditions than at physiological buffer (pH 7.4). These results implied that the ester linkage in the conjugate allowed for selective release of biologically active DTX under mildly acidic conditions. The in vivo biodistribution of a Cy5.5-labeled conjugate was observed using the noninvasive optical imaging technique after its systemic administration into tumor-bearing mice. The conjugate was effectively accumulated into the tumor site, which may have been because of an enhanced permeability and retention effect. In addition, in vivo antitumor efficacy of the conjugate was significantly higher than that of free DTX. Overall, the CMD-based conjugate might have promising potential as a carrier of DTX for cancer therapy.

Collaboration


Dive into the Hwa Seung Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hansang Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Hyewon Ko

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Soyoung Son

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Gil You

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Doo Sung Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Ick Chan Kwon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kwangmeyung Kim

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge