Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwai-Shi Wang is active.

Publication


Featured researches published by Hwai-Shi Wang.


Stem Cells | 2004

Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

Hwai-Shi Wang; Shih-Chieh Hung; Shu‐Tine Peng; Chun‐Chieh Huang; Hung‐Mu Wei; Yi-Jhih Guo; Yu-Show Fu; Mei‐Chun Lai; Chin‐Chang Chen

The Whartons jelly of the umbilical cord contains mucoid connective tissue and fibroblast‐like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5‐azacytidine or by culturing them in cardiomyocyte‐conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N‐cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.


Journal of Biological Chemistry | 1998

Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression: Insights into potential pathogenic mechanisms of thyroid-associated ophthalmopathy

H. James Cao; Hwai-Shi Wang; Ying Zhang; Hung Yun Lin; Richard P. Phipps; Terry J. Smith

Human orbital fibroblasts play a putative role in the pathogenesis of thyroid-associated ophthalmopathy (TAO). We hypothesize that the hyaluronan accumulation and inflammation in TAO derive from enhanced biosynthetic activities of orbital fibroblasts. CD40, a member of the tumor necrosis factor-α receptor superfamily, is a critical signaling molecule expressed by B lymphocytes. Engagement of CD40 with CD154 or CD40 ligand results in the activation of target genes. Orbital fibroblasts also display CD40. Here we report that CD40 engagement leads to substantial increases in hyaluronan synthesis in orbital fibroblasts. The increase is approximately 5-fold above control values, is comparable to the induction elicited by IL-1β and could be attenuated with dexamethasone but not by SC 58125, a prostaglandin endoperoxide H synthase-2 (PGHS-2)-selective inhibitor. PGHS-2 is also induced by CD40 engagement in a time-dependent manner, and this is mediated through increases in levels of steady-state mRNA. The induction of PGHS-2 leads to a dramatically enhanced prostaglandin E2 production that can be blocked by SC 58125 and dexamethasone. CD40 ligand up-regulates the synthesis of IL-1α, and blocking this cytokine with exogenous IL-1 receptor antagonist (IL-1ra) or with IL-1α neutralizing antibodies partially attenuates the induction of PGHS-2. In contrast, CD40 ligand up-regulation of hyaluronan synthesis is unaffected by IL-1ra. CD40 cross-linking enhances mitogen-activated protein kinase activation, and interrupting this pathway attenuates the PGHS-2 induction. Thus the CD40/CD40 ligand bridge represents a potentially important activational pathway for orbital fibroblasts that may underlie the cross-talk between these cells and leukocytes. These findings may be relevant to the pathogenesis of TAO and provide insights into previously unrecognized, potential therapeutic targets.


International Journal of Cancer | 2009

Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase

Yi-Chih Kuo; Cheng-Hsi Su; Chin-Yi Liu; Tien-Hua Chen; Chie-Pein Chen; Hwai-Shi Wang

CD44, a transmembrane receptor for hyaluronic acid, is implicated in various adhesion‐dependent cellular processes, including cell migration, tumor cell metastasis and invasion. Recent studies demonstrated that CD44 expressed in cancer cells can be proteolytically cleaved at the ectodomain by membrane type 1‐matrix metalloproteinase (MT1‐MMP) to form soluble CD44 and that CD44 cleavage plays a critical role in cancer cell migration. Here, we show that transforming growth factor‐β (TGF‐β), a multifunctional cytokine involved in cell proliferation, differentiation, migration and pathological processes, induces MT1‐MMP expression in MDA‐MB‐435s cells. TGF‐β‐induced MT1‐MMP expression was blocked by the specific extracellular regulated kinase‐1/2 (ERK1/2) inhibitor PD98059 and the specific phosphoinositide 3‐OH kinase (PI3K) inhibitor LY294002. In addition, treatment with SP600125, an inhibitor for c‐Jun NH2‐terminal kinase (JNK), resulted in a significant inhibition of MT1‐MMP production. These data suggest that ERK1/2, PI3K, and JNK likely play a role in TGF‐β‐induced MT1‐MMP expression. Interestingly, treatment of MDA‐MB‐435s cells with TGF‐β resulted in a colocalization of MT1‐MMP and CD44 in the cell membrane and in an increased level of soluble CD44. Using an electric cell‐substrate impedance sensing cell‐electrode system, we demonstrated that TGF‐β treatment promotes MDA‐MB‐435s cell migration, involving MT1‐MMP‐mediated CD44 cleavage. MT1‐MMP siRNA transfection‐inhibited TGF‐β‐induced cancer cell transendothelial migration. Thus, this study contributes to our understanding of molecular mechanisms that play a critical role in tumor cell invasion and metastasis.


Journal of Biomedical Science | 2012

Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats

Pei-Jiun Tsai; Hwai-Shi Wang; Yi-Ming Shyr; Zen-Chung Weng; Ling-Chen Tai; Jia-Fwu Shyu; Tien-Hua Chen

BackgroundAlthough diabetes mellitus (DM) can be treated with islet transplantation, a scarcity of donors limits the utility of this technique. This study investigated whether human mesenchymal stem cells (MSCs) from umbilical cord could be induced efficiently to differentiate into insulin-producing cells. Secondly, we evaluated the effect of portal vein transplantation of these differentiated cells in the treatment of streptozotocin-induced diabetes in rats.MethodsMSCs from human umbilical cord were induced in three stages to differentiate into insulin-producing cells and evaluated by immunocytochemistry, reverse transcriptase, and real-time PCR, and ELISA. Differentiated cells were transplanted into the liver of diabetic rats using a Port-A catheter via the portal vein. Blood glucose levels were monitored weekly.ResultsHuman nuclei and C-peptide were detected in the rat liver by immunohistochemistry. Pancreatic β-cell development-related genes were expressed in the differentiated cells. C-peptide release was increased after glucose challenge in vitro. Furthermore, after transplantation of differentiated cells into the diabetic rats, blood sugar level decreased. Insulin-producing cells containing human C-peptide and human nuclei were located in the liver.ConclusionThus, a Port-A catheter can be used to transplant differentiated insulin-producing cells from human MSCs into the portal vein to alleviate hyperglycemia among diabetic rats.


The International Journal of Biochemistry & Cell Biology | 2010

Lipopolysaccharide-induced inhibition of connexin43 gap junction communication in astrocytes is mediated by downregulation of caveolin-3.

Chih-Kai Liao; Seu-Mei Wang; Yuh-Lien Chen; Hwai-Shi Wang; Jiahn-Chun Wu

Astrocytes play a crucial role in maintaining the homeostasis of the brain. Changes to gap junctional intercellular communication (GJIC) in astrocytes and excessive inflammation may trigger brain damage and neurodegenerative diseases. In this study, we investigated the effect of lipopolysaccharide (LPS) on connexin43 (Cx43) gap junctions in rat primary astrocytes. Following LPS treatment, dose- and time-dependent inhibition of Cx43 expression was seen. Moreover, LPS induced a reduction in Cx43 immunoreactivity at cell-cell contacts and significantly inhibited GJIC, as revealed by the fluorescent dye scrape loading assay. Toll-like receptor 4 (TLR4) protein expression was increased 2-3-fold following LPS treatment. To study the pathways underlying these LPS-induced effects, we examined downstream effectors of TLR4 signaling and found that LPS induced a significant increase in phosphorylated extracellular signal-regulated kinase (pERK) levels up to 6 h, followed by signal attenuation and downregulation of caveolin-3 expression. Interestingly, LPS treatment also induced a dramatic increase in inducible nitric oxide synthase (iNOS) levels at 6 h, which were sustained up to 18-24 h. The LPS-induced downregulation of Cx43 and caveolin-3 was prevented by co-treatment of astrocytes with the iNOS cofactor inhibitor 1400W, but not the ERK inhibitor PD98059. Specific knockdown of caveolin-3 using siRNA had a significant inhibitory effect on GJIC and resulted in a downregulation of Cx43. Our results suggest that long-term LPS treatment of astrocytes leads to inhibition of Cx43 gap junction communication by the activation of iNOS and downregulation of caveolin-3 via a TLR4-mediated signaling pathway.


PLOS ONE | 2013

Matrix Metalloproteases and Tissue Inhibitors of Metalloproteinases in Medial Plica and Pannus-like Tissue Contribute to Knee Osteoarthritis Progression

Chih-Chang Yang; Cheng-Yu Lin; Hwai-Shi Wang; Shaw-Ruey Lyu

Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.


PLOS ONE | 2013

Lipopolysaccharide Induces Degradation of Connexin43 in Rat Astrocytes via the Ubiquitin-Proteasome Proteolytic Pathway

Chih-Kai Liao; Chung-Jiuan Jeng; Hwai-Shi Wang; Shu-Huei Wang; Jiahn-Chun Wu

The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway.


Oncology Reports | 2012

Enhanced membrane-type 1 matrix metalloproteinase expression by hyaluronan oligosaccharides in breast cancer cells facilitates CD44 cleavage and tumor cell migration

Chang-I Kung; Cheng-Yi Chen; Chih-Chang Yang; Cheng-Yu Lin; Tien-Hua Chen; Hwai-Shi Wang

Hyaluronan (HA), a component of the extracellular matrix, plays an important role in cell-cell adhesion and cell migration. Membrane type 1-matrix metalloproteinase (MT1‑MMP) is often expressed in invasive cancer cells. CD44, a transmembrane receptor for HA, is implicated in various adhesion-dependent cellular processes including cell migration, tumor cell metastasis and invasion. Previous studies have shown that CD44 is highly expressed in cancer cells and may be proteolytically cleaved at the ectodomain by MT1-MMP; this process of inducing CD44 cleavage plays a critical role in cancer cell migration. We hypothesized that HA modulates MT1-MMP expression to facilitate breast cancer cell migration. Flow cytometry, real-time PCR, western blotting and immunofluorescence staining were used to quantify HA-induced MT1-MMP expression in breast cancer cells. In order to validate the relevance of cell migration and HA-induced MT1-MMP, we analyzed the cell migration via matrigel-coated transwell. We found that after HA oligosaccharide (6.5 kDA) stimulation, MT1-MMP expression in the membrane of breast cancer cells was increased. In response to HA oligosaccharide stimulation, significant upregulation of MT1-MMP mRNA occurred. Our data also provide evidence that HA oligosaccharide enhances MT1-MMP; the elevated expression of MT1-MMP confers enhanced CD44 cleavage and cell migration. In conclusion, we have identified a new function of HA in the induction of MT1-MMP expression in breast cancer cell lines and CD44 cleavage to increase cell migration during the invasion process. The HA oligosaccharide-induced MT1-MMP expression in breast cancer cells may be a critical step in the formation of metastatic colonies.


Cell Transplantation | 2015

Undifferentiated Wharton's Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice.

Pei Jiun Tsai; Hwai-Shi Wang; Gu Jiun Lin; Shu Cheng Chou; Tzu Hui Chu; Wen Ting Chuan; Ying Jui Lu; Zen Chung Weng; Su Ch; Po-Shiuan Hsieh; Huey-Kang Sytwu; Chi-Hung Lin; Tien-Hua Chen; Jia Fwu Shyu

Type 1 diabetes mellitus is caused by T-cell-mediated autoimmune destruction of pancreatic β-cells. Systemic administration of mesenchymal stem cells (MSCs) brings about their incorporation into a variety of tissues with immunosuppressive effects, resulting in regeneration of pancreatic islets. We previously showed that human MSCs isolated from Whartons jelly (WJ-MSCs) represent a potential cell source to treat diabetes. However, the underlying mechanisms are unclear. The purpose of this study was to discern whether undifferentiated WJ-MSCs can differentiate into pancreatic insulin-producing cells (IPCs) and modify immunological responses in nonobese diabetic (NOD) mice. Undifferentiated WJ-MSCs underwent lentiviral transduction to express green fluorescent protein (GFP) and then were injected into the retro-orbital venous sinus of NOD mice. Seven days after transplantation, fluorescent islet-like cell clusters in the pancreas were apparent. WJ-MSC-GFP-treated NOD mice had significantly lower blood glucose and higher survival rates than saline-treated mice. Systemic and local levels of autoaggressive T-cells, including T helper 1 cells and IL-17-producing T-cells, were reduced, and regulatory T-cell levels were increased. Furthermore, anti-inflammatory cytokine levels were increased, and dendritic cells were decreased. At 23 days, higher human C-peptide and serum insulin levels and improved glucose tolerance were found. Additionally, WJ-MSCs-GFP differentiated into IPCs as shown by colocalization of human C-peptide and GFP in the pancreas. Significantly more intact islets and less severe insulitis were observed. In conclusion, undifferentiated WJ-MSCs can differentiate into IPCs in vivo with immunomodulatory effects and repair the destroyed islets in NOD mice.


Histopathology | 2011

Matrix metalloprotease-3 expression in the medial plica and pannus-like tissue in knees from patients with medial compartment osteoarthritis.

Hwai-Shi Wang; Pei-Yin Kuo; Chih-Chang Yang; Shaw-Ruey Lyu

Wang H‐S, Kuo P‐Y, Yang C‐C & Lyu S‐R
(2011) Histopathology 58, 593–600
Matrix metalloprotease‐3 expression in the medial plica and pannus‐like tissue in knees from patients with medial compartment osteoarthritis

Collaboration


Dive into the Hwai-Shi Wang's collaboration.

Top Co-Authors

Avatar

Tien-Hua Chen

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chie-Pein Chen

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiahn-Chun Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jia-Fwu Shyu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chih-Kai Liao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jia Fwu Shyu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pei Jiun Tsai

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Pei-Jiun Tsai

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Zen Chung Weng

Taipei Medical University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge