Hwanhwi Lee
Korea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hwanhwi Lee.
Journal of Microbiological Methods | 2014
Hwanhwi Lee; Yeongseon Jang; Yong Seok Choi; Min Ji Kim; Jaejung Lee; Hanbyul Lee; Joo Hyun Hong; Young Min Lee; Gyu Hyeok Kim; Jae Jin Kim
White rot fungi are essential in forest ecology and are deeply involved in wood decomposition and the biodegradation of various xenobiotics. The fungal ligninolytic enzymes involved in these processes have recently become the focus of much attention for their possible biotechnological applications. Successful bioremediation requires the selection of species with desirable characteristics. In this study, 150 taxonomically and physiologically diverse white rot fungi, including 55 species, were investigated for their performance in a variety of biotechnological procedures, such as dye decolorization, gallic acid reaction, ligninolytic enzymes, and tolerance to four PAHs, phenanthrene, anthracene, fluoranthene, and pyrene. Among these fungi, six isolates showed the highest (>90%) tolerance to both individual PAH and mixed PAHs. And six isolates oxidized gallic acid with dark brown color and they rapidly decolorized RBBR within ten days. These fungi revealed various profiles when evaluated for their biotechnological performance to compare the capability of degradation of PAHs between two groups selected. As the results demonstrated the six best species selected from gallic acid more greatly degraded four PAHs than the other isolates selected via tolerance test. It provided that gallic acid reaction test can be performed to rank the fungi by their ability to degrade the PAHs. Most of all, Peniophora incarnata KUC8836 and Phlebia brevispora KUC9033 significantly degraded the four PAHs and can be considered prime candidates for the degradation of xenobiotic compounds in environmental settings.
Marine Drugs | 2015
Joo Hyun Hong; Seokyoon Jang; Young Mok Heo; Mihee Min; Hwanhwi Lee; Young Min Lee; Hanbyul Lee; Jae Jin Kim
Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL).
Folia Microbiologica | 2010
Hwanhwi Lee; Yong Seok Choi; M. J. Kim; Na Yoon Huh; Gyu-Hyeok Kim; Young Woon Lim; S. M. Kang; S. T. Cho; Jeum-Jong Kim
Seventy-nine white rot strains were screened to determine if they had the potential for use in the degradation of oligocyclic aromates (PAHs) by measuring their dye-decoloration rate. Fourteen strains that were selected based on their dye-decoloration rate were then evaluated for the ability to tolerate various levels of PAHs spiked in agar medium. The ability of white rot fungi to degrade 3- or 4-ring PAHs (anthracene, phenanthrene, fluoranthene, pyrene) was determined. Two strains of Phanerochaete sordida (KUC8369, KUC8370) were possible PAHs degraders, degrading a significantly greater amount of phenanthrene and fluoranthene than the culture collection strain P. chrysosporium (a known PAHs degrader). The production of manganese peroxidase, the only extracellular ligninolytic enzyme detected during the cultivation, was evaluated.
Holzforschung | 2011
Jae Jin Kim; Sung Suk Lee; Jong Bum Ra; Hwanhwi Lee; Nayoon Huh; Gyu Hyeok Kim
Abstract Biological deterioration is the most important issue facing the use of bamboo as a bioresource. To identify the fungi responsible for bamboo degradation, isolates were obtained from three decaying bamboo species and evaluated. A total of 16 genera and 18 species of fungi were isolated and identified. The major fungi causing serious damage are Trametes versicolor and Arthrinium arundinis, which caused the largest weight losses in tests, of approximately 21.6% and 17.9%, respectively. This investigation confirms that the natural durability of bamboo in outdoor utilization is low.
Bioremediation Journal | 2015
Hwanhwi Lee; Seo Yeong Yun; Seokyoon Jang; Gyu Hyeok Kim; Jae Jin Kim
ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are present in products made from creosote, coal tar, and asphalt. When wood pile treated with creosote is placed in soil, PAHs can contaminate it. Creosote has been used for wood preservation in the past and is composed of approximately 85% PAHs and 15% phenolic compounds. PAHs cause harmful effects to humans and the environment because of their carcinogenic and mutagenic properties. White rot fungi can degrade not only lignin, but also recalcitrant organic compounds such as PAHs. Among numerous white rot fungi used in previous studies, four species were selected to degrade PAHs in a liquid medium. From this evaluation of the degradation of PAHs by the four fungal isolates, two species were ultimately selected for the highest rates of removal. Following 2 weeks of incubation with Peniophora incarnata KUC8836, the degradation rates of phenanthrene, fluoranthene, and pyrene were 86.5%, 77.4%, and 82.6%, respectively. Mycoaciella bispora KUC8201 showed the highest degradation rate for anthracene (61.8%). Hence, bioremediation of creosote-contaminated soil with an initial concentration of 229.49 mg kg−1 PAHs was carried out using the two selected fungi because they could simultaneously degrade 13 more PAHs than the comparison species. More importantly, isolates of P. incarnata KUC8836 were discovered as powerful degraders of PAHs by producing laccase and manganese-dependent peroxidase (MnP), with 1.7- and 1.1-fold higher than the comparison species, respectively. Therefore, the white rot fungus may be proposed for the removal of PAHs and xenobiotic compounds in contaminated environments.
Microbial Ecology | 2015
Yeongseon Jang; Seokyoon Jang; Mihee Min; Joo Hyun Hong; Hanbyul Lee; Hwanhwi Lee; Young Woon Lim; Jae Jin Kim
In this study, three different methods (fruiting body collection, mycelial isolation, and 454 sequencing) were implemented to determine the diversity of wood-inhabiting basidiomycetes from dead Manchurian fir (Abies holophylla). The three methods recovered similar species richness (26 species from fruiting bodies, 32 species from mycelia, and 32 species from 454 sequencing), but Fisher’s alpha, Shannon-Wiener, Simpson’s diversity indices of fungal communities indicated fruiting body collection and mycelial isolation displayed higher diversity compared with 454 sequencing. In total, 75 wood-inhabiting basidiomycetes were detected. The most frequently observed species were Heterobasidion orientale (fruiting body collection), Bjerkandera adusta (mycelial isolation), and Trichaptum fusco-violaceum (454 sequencing). Only two species, Hymenochaete yasudae and Hypochnicium karstenii, were detected by all three methods. This result indicated that Manchurian fir harbors a diverse basidiomycetous fungal community and for complete estimation of fungal diversity, multiple methods should be used. Further studies are required to understand their ecology in the context of forest ecosystems.
Journal of Basic Microbiology | 2013
Hwanhwi Lee; Yeongseon Jang; Jong-Min Kim; Gyu Hyeok Kim; Jae Jin Kim
Polycyclic aromatic hydrocarbons (PAHs) have a highly recalcitrant structure; however, they can be degraded by white‐rot fungi which have the potential to biodegrade recalcitrant organic compounds. Four fungal isolates were selected from 23 newly isolated basidiomycetes, based on their dye decolorization rate, and they were evaluated for their ability to degrade 50 ppm of pyrene. The isolate phylogenetically affiliated to Merulius tremellosus KUC9161 demonstrated the highest degradation rate of pyrene, regardless of the production of ligninolytic enzyme activities. The selected isolates were tested for their ability to degrade pyrene and other PAHs in creosote‐contaminated soil. The results of the degradation tests indicated that M. tremellosus KUC9161 degraded a larger variety of PAH compounds than Phanerochaete chrysosporium, a known PAH degrader. On the basis of our results, the isolate M. tremellosus KUC9161 has a high potential to be used in the large‐scale biodegradation of PAHs, and the species may also be used to degrade recalcitrant materials in creosote‐contaminated soil.
Mycobiology | 2014
Hanbyul Lee; Young Min Lee; Yeongseon Jang; Sang-Joon Lee; Hwanhwi Lee; Byoung Jun Ahn; Gyu Hyeok Kim; Jae Jin Kim
Abstract To the best of our knowledge, this is the first report on thermophilic fungi isolated in Korea. Three species of thermophiles were isolated from compost and were identified as Myriococcum thermophilum, Thermoascus aurantiacus, and Thermomyces lanuginosus. They can grow at temperatures above 50°C and produce high levels of cellulolytic and xylanolytic enzymes at high temperatures. Notably, the considerable thermostability of the endo-glucanase produced by T. aurantiacus has made the fungus an attractive source of industrial enzymes.
Mycobiology | 2014
Yeongseon Jang; Seokyoon Jang; Jaejung Lee; Hwanhwi Lee; Hanbyul Lee; Young Min Lee; Joo Hyun Hong; Mihee Min; Young Woon Lim; Changmu Kim; Jae Jin Kim
Abstract In Seoul, a majority of plant communities have undergone significant changes over the last few decades; however, how wood decay fungi have responded and adapted to the changes in vegetation remains unknown. Through an ongoing investigation of Korean indigenous fungi, ca. 300 specimens with poroid basidiocarp were collected in Seoul during 2008~2012. Morphological examination and molecular analysis using the internal transcribed spacer and nuclear large subunit ribosomal DNA region sequences helped identify 38 species belonging to 28 genera, 10 families, and 5 orders in this area. Among them, three polypores, Abundisporus pubertatis, Coriolopsis strumosa, and Perenniporia maackiae were found to be new to South Korea.
Folia Microbiologica | 2017
Young Min Lee; Hanbyul Lee; Young Mok Heo; Hwanhwi Lee; Joo Hyun Hong; Jae Jin Kim
The present study was conducted to determine the gene responsible for beta-glucosidase (BGL) production and to generate a full-length complementary DNA (cDNA) of one of the putative BGL genes, which showed a significant expression level when Schizophyllum commune KUC9397 was grown in optimized medium. The relative expression levels of seven genes encoding BGL of S. commune KUC9397 were determined with real-time quantitative reverse transcription PCR in cellulose-containing optimized medium (OM) compared to glucose-containing basal medium (BM). The most abundant transcript was bgl3a in OM. The transcript number of the bgl3a increased more than 57.60-fold when S. commune KUC9397 was grown on cellulose-containing OM compared to that on glucose-containing BM. The bgl3a was identified, and a deduced amino acid sequence of bgl3a shared homology (97%) with GH3 BGL of S. commune H4-8. This is the first report showing the transcription levels of genes encoding BGL and identification of full-length cDNA of glycoside hydrolase 3 (GH3) BGL from S. commune. Furthermore, this study is one of the steps for consolidated bioprocessing of lignocellulosic biomass to bioethanol.