Hwankyu Lee
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hwankyu Lee.
Nature Genetics | 2006
John A. Sayer; Edgar A. Otto; John F. O'Toole; Gudrun Nürnberg; Michael A. Kennedy; Christian F. W. Becker; Hans Christian Hennies; Juliana Helou; Massimo Attanasio; Blake V. Fausett; Boris Utsch; Hemant Khanna; Yan Liu; Iain A. Drummond; Isao Kawakami; Takehiro Kusakabe; Motoyuki Tsuda; Li Ma; Hwankyu Lee; Ronald G. Larson; Susan J. Allen; Christopher J. Wilkinson; Erich A. Nigg; Chengchao Shou; Concepción Lillo; David S. Williams; Bernd Hoppe; Markus J. Kemper; Thomas J. Neuhaus; Melissa A. Parisi
The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle–dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.
Journal of Physical Chemistry B | 2008
Hwankyu Lee; Ronald G. Larson
We have performed molecular dynamics (MD) simulations of multiple copies of unacetylated G5 and G7 and acetylated G5 dendrimers in dimyristoylphosphatidylcholine bilayers with explicit water using the coarse-grained model developed by Marrink et al. (J. Phys. Chem. B 2007, 111, 7812) with the inclusion of long-range electrostatics. When initially clustered together near the bilayer, neutral acetylated dendrimers aggregate, whereas cationic unacetylated dendrimers do not aggregate, but separate from each other, similar to the observations from atomic force microscopy by Mecke et al. (Chem. Phys. Lipids 2004, 132, 3). The bilayers interacting with unacetylated dendrimers of higher concentration are significantly deformed and show pore formation on the positively curved portions, while acetylated dendrimers are unable to form pores. Unacetylated G7 dendrimers bring more water molecules into the pores than do unacetylated G5 dendrimers. These results agree qualitatively with experimental results showing that significant cytoplasmic-protein leakage is produced by unacetylated G7 dendrimers at concentrations as low as 10 nM, but only at a much higher concentration of 400 nM for unacetylated G5 dendrimers (Bioconjugate Chem. 2004, 15, 774). This good qualitative agreement indicates that the effect on pore formation of the concentration and size of large nanoparticles can be studied through coarse-grained MD simulations, provided that long-range electrostatic interactions are included.
Journal of Physical Chemistry B | 2008
Hwankyu Lee; Ronald G. Larson
We performed molecular dynamics (MD) simulations of multiple copies of poly- l-lysine (PLL) and charged polyamidoamine (PAMAM) dendrimers in dimyristoylphosphatidylcholine (DMPC) bilayers with explicit water using the coarse-grained model developed by Marrink et al. ( J. Chem. Theory Comput. 2008, 4, 819 ). Membrane disruption is enhanced at higher concentrations and charge densities of both spheroidally shaped dendrimers and linear PLL polymers, in qualitatively agreement with experimental studies by Hong et al. (Bioconjugate Chem. 2006, 17, 728 ). However, larger molecular size enhances membrane disruption and pore formation only for dendrimers and not for the linear PLL. Despite more intimate electrostatic interactions of linear molecules than are possible for spheroidal dendrimers, only the dendrimers were found to perforate membranes, apparently because they cannot spread onto a single leaflet, and so must penetrate the bilayer to get favorable electrostatic interactions with head groups on the opposite leaflet. These results indicate that a relatively rigid spheroidal shape is more efficient than a flexible linear shape in increasing membrane permeability. These results compare favorably with experimental findings.
Journal of Physical Chemistry B | 2011
Hwankyu Lee; Richard W. Pastor
Self-assembly of polyethylene glycol (PEG)-grafted lipids at different sizes and concentrations was simulated using the MARTINI coarse-grained (CG) force field. The interactions between CG PEG and CG dipalmitoylglycerophosphocholine (DPPC)-lipids were parametrized by matching densities of 19-mers of PEG and polyethylene oxide (PEO) grafted to the bilayer from all-atom simulations. Mixtures of lipids and PEG-grafted (M(w) = 550, 1250, and 2000) lipids in water self-assembled to liposomes, bicelles, and micelles at different ratios of lipids and PEGylated lipids. Average aggregate sizes decrease with increasing PEGylated-lipid concentration, in qualitative agreement with experiment. PEGylated lipids concentrate at the rims of bicelles, rather than at the planar surfaces; this also agrees with experiment, though the degree of segregation is less than that assumed in previous modeling of the experimental data. Charged lipids without PEG evenly distribute at the rim and planar surfaces of the bicelle. The average end-to-end distances of the PEG on the PEGylated lipids are comparable in liposomes, bicelles (edge or planar surface), and micelles and only slightly larger than for an isolated PEG in solution. The ability of PEGylated lipids to induce the membrane curvature by the bulky headgroup with larger PEG, and thereby modulate the phase behavior and size of lipid assemblies, arises from their relative concentration.
Journal of Physical Chemistry B | 2009
Hwankyu Lee; Ronald G. Larson
We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.
Journal of Physical Chemistry B | 2013
Hwankyu Lee
Single-walled carbon nanotubes (SWNTs) wrapped with different types of lipids and polyethylene glycol (PEG)-grafted lipids were simulated with lipid bilayers. Simulations were carried out with the previously parametrized coarse-grained (CG) SWNT and PEG force fields that had captured the experimentally observed conformations of self-assembled SWNT-lipid complexes and phase behavior of PEG-grafted lipids. Simulations of multiple copies of the SWNT in water show that all pure SWNTs aggregate, lipid-wrapped SWNTs partially aggregate, but those wrapped with lipids grafted to PEG (M(w) = 550) completely disperse, indicating the effect of short PEG chains on interparticle aggregation, in agreement with experiment. Starting with initial SWNT orientation parallel to the bilayer surface, SWNTs wrapped with lysophospholipids and PEG (M(w) = 550)-grafted lipids insert into the hydrophobic region of the bilayer, while SWNTs wrapped with phospholipids and longer PEG (M(w) = 2000)-grafted lipids do not. These indicate that SWNTs insert because of the hydrophobic interaction with the bilayer tails, but the tight wrapping of charged lipid headgroups and long hydrophilic PEG chains can weaken the hydrophobic interaction and inhibit SWNT insertion. The inserted SWNTs contact the entire tails of neighboring lipids in one leaflet of the bilayer, which disorders the lipid bilayer and induces positive curvature. Our findings indicate that interparticle aggregation, SWNT penetration, and membrane curvature can be modulated by the SWNT-lipid structure and the PEG length.
Journal of Physical Chemistry B | 2006
Hwankyu Lee; Ronald G. Larson
Macromolecules | 2011
Hwankyu Lee; Ronald G. Larson
Journal of Physical Chemistry B | 2006
Hwankyu Lee; James R. Baker; Ronald G. Larson
Journal of Physical Chemistry C | 2011
Hwankyu Lee; Ronald G. Larson