Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwei Ming Peng is active.

Publication


Featured researches published by Hwei Ming Peng.


Journal of Inorganic Biochemistry | 2002

Replacement of active-site cysteine-436 by serine converts cytochrome P450 2B4 into an NADPH oxidase with negligible monooxygenase activity

Kostas P. Vatsis; Hwei Ming Peng; Minor J. Coon

The function of the unique axial thiolate ligand of cytochrome P450 has been investigated by mutagenesis of the active-site cysteine with other amino acids in NH(2)-truncated P450s 2B4 and 2E1. The expressed Ser-436 variant of P450 2B4 was highly purified but incurred considerable heme loss. The pyridine hemochrome spectrum of C436S is characteristic of protoporphyrin IX, and the absolute spectra display Soret maxima at 405 nm (ferric), 422 nm (ferrous), and 413 nm (ferrous CO). 2B4:C436S catalyzes the NADPH- and time-dependent formation of H(2)O(2) in the reconstituted enzyme system, with maximal rates at approximately equimolar amounts of P450 reductase and C436S hemeprotein. The 2-electron oxidase activity with saturating reductase is directly proportional to the concentration of 2B4:C436S, and the turnover is 60-70% of that of the wild-type enzyme. In contrast, the C436S variant is devoid of oxygenase activity with typical substrates such as d-benzphetamine, 1-phenylethanol, and 4-fluorophenol, and has only marginal 4-nitrophenol aromatic hydroxylation activity. H(2)O(2)-supported peroxidation of guaiacol and pyrogallol is comparable with 2B4 and mutant C436S and negligible relative to the turnover of peroxidases with these substrates. Neither 2B4 nor 2B4:C436S catalyzes H(2)O(2) decomposition. It is concluded that replacement of active-site Cys-436 by Ser converts P450 2B4 mainly into a 2-electron oxidase.


Biochemistry | 2013

The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65.

Hwei Ming Peng; Richard J. Auchus

The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone.


Journal of Biological Chemistry | 2014

Catalytically relevant electrostatic interactions of cytochrome P450c17 (CYP17A1) and cytochrome b5

Hwei Ming Peng; Jiayan Liu; Sarah E. Forsberg; Hong T. Tran; Sean M. Anderson; Richard J. Auchus

Background: Cytochrome b5 (b5) stimulates the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Results: A carboxylate group in b5 residues Glu-48/Glu-49 is required for 17,20-lyase activity, and cross-linked peptides Lys-88(CYP17A1)-Glu-61(b5) and Lys-347(CYP17A1R347K)Glu-42(b5) involve adjacent residues. Conclusion: These data support a molecular model of a CYP17A1-b5 complex. Significance: The CYP17A1-b5 interaction site might be a drug target to inhibit androgen synthesis. Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: 84EVLIKK89-b5: 53EQAGGDATENFEDVGHSTDAR73 and CYP17A1-R347K: 341TPTISDKNR349-b5: 40FLEEHPGGEEVLR52. Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis.


Biochemistry | 2016

Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production

Hwei Ming Peng; Sang Choul Im; Naw May Pearl; Adina F. Turcu; Juilee Rege; Lucy Waskell; Richard J. Auchus

Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

A-ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone

Mariana Garrido; Hwei Ming Peng; Francis K. Yoshimoto; Sunil K. Upadhyay; Eugene Bratoeff; Richard J. Auchus

Abiraterone acetate is a potent inhibitor of human cytochrome P450c17 (CYP17A1, 17α-hydroxylase/17,20-lyase) and is clinically used in combination with prednisone for the treatment of castration-resistant prostate cancer. Although many studies have documented the potency of abiraterone (Abi) in a variety of in vitro and in vivo systems for several species, the exact potency of Abi for human CYP17A1 enzyme has not yet been determined, and the structural requirements for high-potency steroidal azole inhibitors are not established. We synthesized 4 Abi analogs differing in the A-B ring substitution patterns: 3α-hydroxy-Δ(4)-Abi (13), 3-keto-Δ(4)-Abi (11), 3-keto-5α-Abi (6), and 3α-hydroxy-5α-Abi (5). We measured the spectral binding constants (Ks) using purified and modified human CYP17A1 along with the determination constants (Ki) applying a native human CYP17A1 enzyme in yeast microsomes for these compounds as well as for ketoconazole. For Abi, 3-keto-Δ(4)-Abi, 3-keto-5α-Abi, and 3α-hydroxy-5α-Abi, the type 2 spectral changes gave the best fit for a quadratic equation, since in these experiments Ks values were 0.1-2.6nM, much lower than that for ketoconazole and 3α-hydroxy-Δ(4)-Abi (Ks values were 140 and 1660nM, respectively). Inhibition experiments showed mixed inhibition patterns with Ki values of 7-80nM. Abi dissociation from the CYP17A1-Abi complex was incomplete and slow; the t1/2 for dissociation was 1.8h, with 55% of complex remaining after 5h. We conclude that Abi and the 3 related steroidal azoles (3-keto-Δ(4)-Abi, 3-keto-5α-Abi, and 3α-hydroxy-5α-Abi), which also mimic natural substrates, are extraordinarily potent inhibitors of human CYP17A1, whereas the 3α-hydroxy-Δ(4)-Abi is moderately potent and comparable to ketoconazole.


Archives of Biochemistry and Biophysics | 2014

Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries.

Hwei Ming Peng; Richard J. Auchus

Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4.


Biochemistry | 2014

Epoxidation activities of human cytochromes P450c17 and P450c21.

Francis K. Yoshimoto; Hwei Ming Peng; Haoming Zhang; Sean M. Anderson; Richard J. Auchus

Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes.


Biochemistry | 2017

Molecular Recognition in Mitochondrial Cytochromes P450 That Catalyze the Terminal Steps of Corticosteroid Biosynthesis

Hwei Ming Peng; Richard J. Auchus

The mitochondrial cytochromes P450 11B1 and P450 11B2 are responsible for the final stages of cortisol and aldosterone synthesis, respectively. Dysregulation of both enzymes has been implicated in secondary forms of hypertension. Molecular recognition of the cytochromes P450 with their corresponding redox partner is a key step in the catalytic cycle, yet the precise nature of the interaction of P450 11B1 or P450 11B2 with their proximal partner, adrenodoxin (Adx), is still unknown. Here, we obtained P450 11B1·Adx2 and P450 11B2·Adx2 complexes using the zero-length cross-linker ethyl-3-[3-(dimethylamino)propyl]carbodiimide, which formed best under low-ionic strength conditions. R-to-K mutations were introduced into the P450s at residues predicted to form salt bridges with Adx and allow cross-linking with the carbodiimide reagent. Mass spectrometric analysis of the chymotrypsin-digested ternary complexes identified seven cross-linked peptide pairs. Consistent with the electrostatic interaction of K370 in P450 11B1-WT and K366 in P450 11B2-R366K with D79 of Adx, Adx mutation L80K abolished complex formation. Using these sites of interaction as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the P450 11B1·Adx2 complex. The appositional surfaces include R/K366, K370, and K357 of P450 11B1, which interact with D79, D76, and D113 (second molecule) of Adx, respectively. Similar to P450 11B1, P450 11B2 also forms a complex with the Adx dimer via three lysine residues. We describe similarities and differences in our models of the P450 11B1·Adx2 and P450 11B2·Adx2 complexes with the structure of the P450 11A1-Adx fusion protein.


The Journal of Clinical Endocrinology and Metabolism | 2018

Adrenocorticotropin Acutely Regulates Pregnenolone Sulfate Production by the Human Adrenal In Vivo and In Vitro

Juilee Rege; Aya T. Nanba; Richard J. Auchus; Jianwei Ren; Hwei Ming Peng; William E. Rainey; Adina F. Turcu

Background Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in human circulation, and adrenocorticotropic hormone (ACTH) is considered the major regulator of its synthesis. Pregnenolone sulfate (PregS) and 5-androstenediol-3-sulfate (AdiolS) have recently emerged as biomarkers of adrenal disorders. Objective To define the relative human adrenal production of Δ5-steroid sulfates under basal and cosyntropin-stimulated conditions. Methods Liquid chromatography-tandem mass spectrometry was used to quantify three unconjugated and four sulfated Δ5-steroids in (1) paired adrenal vein (AV) and mixed venous serum samples (21 patients) and (2) cultured human adrenal cells both before and after cosyntropin stimulation, (3) microdissected zona fasciculata (ZF) and zona reticularis (ZR) from five human adrenal glands, and (4) a reconstituted in vitro human 17α-hydroxylase/17,20-lyase/(P450 17A1) system. Results Of the steroid sulfates, PregS had the greatest increase after cosyntropin stimulation in the AV (32-fold), whereas DHEAS responded modestly (1.8-fold). PregS attained concentrations comparable to those of DHEAS in the AV after cosyntropin stimulation (AV DHEAS/PregS, 24 and 1.3 before and after cosyntropin, respectively). In cultured adrenal cells, PregS demonstrated the sharpest response to cosyntropin, whereas DHEAS responded only modestly (21-fold vs 1.8-fold higher compared with unstimulated cells at 3 hours, respectively). Steroid analyses in isolated ZF and ZR showed similar amounts of PregS and 17α-hydroxypregnenolone in both zones, whereas DHEAS and AdiolS were higher in ZR (P < 0.05). Conclusion Our studies demonstrated that unlike DHEAS, PregS displayed a prominent acute response to cosyntropin. PregS could be used to interrogate the acute adrenal response to ACTH stimulation and as a biomarker in various adrenal disorders.


International Congress Series | 2002

Cytochrome P450, a very hard mountain to climb: Evidence for multiple functional species of activated oxygen

Minor J. Coon; Kostas P. Vatsis; Hwei Ming Peng

Abstract Although much has been learned about cytochrome P450 as an oxygenating catalyst since its discovery as a carbon monoxide-binding pigment in liver microsomes over 40 years ago, two major problems remain unsolved. These are the role of the heme sulfur ligand and the identity of the “activated oxygen” species generated during the reduction of molecular oxygen. To address these questions, mutagenesis of pertinent amino acid residues in NH2-terminal-truncated microsomal P450s 2B4 and 2E1, has been carried out. Clones for these cytochromes with the active-site cysteine replaced by histidine, serine, or tyrosine were expressed in Escherichia coli. Despite instability, some of the resulting hemoproteins were purified. The histidine-437 mutant of P450 2E1 is reduced by NADPH in the presence of the reductase and yields H2O2 in the reconstituted system. However, no activity was detected in the oxidation of several substrates, thus indicating a functional role for the sulfur ligand. In other experiments, the active-site threonine residue that facilitates proton transfer was replaced with alanine. Changes in the rates of catalysis of aldehyde deformylation, olefin epoxidation, ipso-substitution, and other reactions by P450 2B4:T302A and 2E1:T303A mutants provided evidence for peroxo-iron, hydroperoxo-iron, and oxenoid-iron as discrete functional oxygenating species. The availability of multiple oxidants is believed to contribute to the unmatched versatility of the P450 cytochromes.

Collaboration


Dive into the Hwei Ming Peng's collaboration.

Top Co-Authors

Avatar

Richard J. Auchus

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiayan Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Juilee Rege

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge