Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hye-Mi Kim is active.

Publication


Featured researches published by Hye-Mi Kim.


Science | 2009

Impact of Shifting Patterns of Pacific Ocean Warming on North Atlantic Tropical Cyclones

Hye-Mi Kim; Peter J. Webster; Judith A. Curry

El Niños Cousin The most energetic and well-known quasi-periodic, air-sea temperature disturbance is ENSO, the mother of the warming of equatorial eastern Pacific surface waters known as El Niño. El Niño, and its cold sister La Niña, can produce dramatic effects on weather across the globe and so it is of great interest and importance to understand it better. Warming in the eastern tropical Pacific is not the only recurring pattern of sea-surface temperature variability in the Pacific, however. Kim et al. (p. 77; see the Perspective by Holland) report that a pattern of extensive warming in the central Pacific also occurs on a quasi-periodic basis, that it has a large effect on atmospheric circulation, and that it is more predictable than El Niño. These central Pacific warming events have become increasingly more frequent in the last few decades, making it even more vital that we understand them. Warming of the central Pacific sea surface causes different patterns of atmospheric circulation than do El Niño events. Two distinctly different forms of tropical Pacific Ocean warming are shown to have substantially different impacts on the frequency and tracks of North Atlantic tropical cyclones. The eastern Pacific warming (EPW) is identical to that of the conventional El Niño, whereas the central Pacific warming (CPW) has maximum temperature anomalies located near the dateline. In contrast to EPW events, CPW episodes are associated with a greater-than-average frequency and increasing landfall potential along the Gulf of Mexico coast and Central America. Differences are shown to be associated with the modulation of vertical wind shear in the main development region forced by differential teleconnection patterns emanating from the Pacific. The CPW is more predictable than the EPW, potentially increasing the predictability of cyclones on seasonal time scales.


Journal of Climate | 2014

Predictability and Prediction Skill of the MJO in Two Operational Forecasting Systems

Hye-Mi Kim; Peter J. Webster; Violeta E. Toma; Daehyun Kim

AbstractThe authors examine the predictability and prediction skill of the Madden–Julian oscillation (MJO) of two ocean–atmosphere coupled forecast systems of ECMWF [Variable Resolution Ensemble Prediction System (VarEPS)] and NCEP [Climate Forecast System, version 2 (CFSv2)]. The VarEPS hindcasts possess five ensemble members for the period 1993–2009 and the CFSv2 hindcasts possess three ensemble members for the period 2000–09. Predictability and prediction skill are estimated by the bivariate correlation coefficient between the observed and predicted Wheeler–Hendon real-time multivariate MJO index (RMM). MJO predictability is beyond 32 days lead time in both hindcasts, while the prediction skill is about 27 days in VarEPS and 21 days in CFSv2 as measured by the bivariate correlation exceeding 0.5. Both predictability and prediction skill of MJO are enhanced by averaging ensembles. Results show clearly that forecasts initialized with (or targeting) strong MJOs possess greater prediction skill compared to...


Geophysical Research Letters | 2014

Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems

Daehyun Kang; Myong-In Lee; Jungho Im; Daehyun Kim; Hye-Mi Kim; Hyun-Suk Kang; Siegfried D. Schubert; Alberto Arribas; Craig MacLachlan

This study assesses the skill of boreal winter Arctic Oscillation (AO) predictions with state-of-the-art dynamical ensemble prediction systems (EPSs): GloSea4, CFSv2, GEOS-5, CanCM3, CanCM4, and CM2.1. Long-term reforecasts with the EPSs are used to evaluate how well they represent the AO and to assess the skill of both deterministic and probabilistic forecasts of the AO. The reforecasts reproduce the observed changes in the large-scale patterns of the Northern Hemispheric surface temperature, upper level wind, and precipitation associated with the different phases of the AO. The results demonstrate that most EPSs improve upon persistence skill scores for lead times up to 2 months in boreal winter, suggesting some potential for skillful prediction of the AO and its associated climate anomalies at seasonal time scales. It is also found that the skill of AO forecasts during the recent period (1997–2010) is higher than that of the earlier period (1983–1996).


Journal of Climate | 2016

MJO Propagation across the Maritime Continent in the ECMWF Ensemble Prediction System

Hye-Mi Kim; Daehyun Kim; F. Vitart; Violeta E. Toma; Jong-Seong Kug; Peter J. Webster

AbstractThe characteristics of the MJO propagation across the Maritime Continent are investigated using a 20-yr reforecast dataset from the ECMWF ensemble prediction system. Analysis of the MJO events initialized over the Indian Ocean (phase 2) shows that the initial MJO amplitude and prediction skill relationship is not linear, particularly when the predictions start in moderate (between strong and weak) MJO amplitude category. To examine the key factors that determine the prediction skill, reforecasts in the moderate category are grouped into high- and low-skill events, and the differences in their ocean–atmospheric conditions as well as the physical processes during reforecast period are examined. The initial distribution of OLR anomalies in high-skill events shows a clear dipole pattern of convection with an enhanced convective anomalies over the Indian Ocean and strongly suppressed convective anomalies in the western Pacific Ocean. This dipole mode may support the MJO propagation across the Maritime ...


Monthly Weather Review | 2016

A Revised Real-Time Multivariate MJO Index

Ping Liu; Qin Zhang; Chidong Zhang; Yuejian Zhu; Marat Khairoutdinov; Hye-Mi Kim; Courtney Schumacher; Minghua Zhang

AbstractThis study investigates why OLR plays a small role in the Real-time Multivariate (Madden–Julian oscillation) MJO (RMM) index and how to improve it. The RMM index consists of the first two leading principal components (PCs) of a covariance matrix, which is constructed by combined daily anomalies of OLR and zonal winds at 850 (U850) and 200 hPa (U200) in the tropics after being normalized with their globally averaged standard deviations of 15.3 W m−2, 1.8 m s−1, and 4.9 m s−1, respectively. This covariance matrix is reasoned mathematically close to a correlation matrix. Both matrices substantially suppress the overall contribution of OLR and make the index more dynamical and nearly transparent to the convective initiation of the MJO. A covariance matrix that does not use normalized anomalies leads to the other extreme where OLR plays a dominant role while U850 and U200 are minor. Numerous tests indicate that a simple scaling of the anomalies (i.e., 2 W m−2, 1 m s−1, and 1 m s−1) can better balance t...


Weather and Forecasting | 2015

Statistical–Dynamical Seasonal Forecast for Tropical Cyclones Affecting New York State

Hye-Mi Kim; Edmund K. M. Chang; Minghua Zhang

AbstractThis study attempts, for the first time, to predict the annual number of tropical cyclones (TCs) affecting New York State (NYS), as part of the effort of the New York State Resiliency Institute for Storms and Emergencies (RISE). A pure statistical prediction model and a statistical–dynamical hybrid prediction model have been developed based on the understanding of the physical mechanism between NYS TCs and associated large-scale climate variability. During the cold phase of El Nino–Southern Oscillation, significant circulation anomalies in the Atlantic Ocean provide favorable conditions for more recurving TCs into NYS. The pure statistical prediction model uses the sea surface temperature (SST) over the equatorial Pacific Ocean from the previous months. Cross validation shows that the correlation between the observed and predicted numbers of NYS TCs is 0.56 for the June 1979–2013 forecasts. Forecasts of the probability of one or more TCs impacting NYS have a Brier skill score of 0.35 compared to c...


Journal of Climate | 2015

ENSO’s Modulation of Water Vapor Transport over the Pacific–North American Region

Hye-Mi Kim; Michael A. Alexander

AbstractThe vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Nino (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Nino (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mex...


Journal of Climate | 2016

Seasonal-to-Interannual Prediction Skills of Near-Surface Air Temperature in the CMIP5 Decadal Hindcast Experiments

Jung Choi; Seok-Woo Son; Yoo-Geun Ham; June-Yi Lee; Hye-Mi Kim

AbstractThis study explores the seasonal-to-interannual near-surface air temperature (TAS) prediction skills of state-of-the-art climate models that were involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal hindcast/forecast experiments. The experiments are initialized in either November or January of each year and integrated for up to 10 years, providing a good opportunity for filling the gap between seasonal and decadal climate predictions. The long-lead multimodel ensemble (MME) prediction is evaluated for 1981–2007 in terms of the anomaly correlation coefficient (ACC) and mean-squared skill score (MSSS), which combines ACC and conditional bias, with respect to observations and reanalysis data, paying particular attention to the seasonal dependency of the global-mean and equatorial Pacific TAS predictions. The MME shows statistically significant ACCs and MSSSs for the annual global-mean TAS for up to two years, mainly because of long-term global warming trends. When the long...


Journal of Climate | 2014

Improvement of Initialized Decadal Predictions over the North Pacific Ocean by Systematic Anomaly Pattern Correction

Hye-Mi Kim; Yoo-Geun Ham; Adam A. Scaife

AbstractThe prediction skill and errors in surface temperature anomalies in initialized decadal hindcasts from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are assessed using six ocean–atmosphere coupled models initialized every year from 1961 to 2008. The initialized hindcasts show relatively high prediction skill over the regions where external forcing dominates, indicating that a large portion of the prediction skill is due to the long-term trend. After removing the linear trend, high prediction skill is shown near the centers of action of the dominant decadal climate oscillations, such as the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO). Low prediction skill appears over the tropical and eastern North Pacific Ocean where the predicted anomaly patterns associated with the PDO are systematically different in model and observations. By statistically correcting those systematic errors using a stepwise pattern projection method (SPPM) based on the data in an...


Journal of Climate | 2017

Changes in Northern Hemisphere Winter Storm Tracks under the Background of Arctic Amplification

Jiabao Wang; Hye-Mi Kim; Edmund K. M. Chang

AbstractAn interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Nina–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Nino–Southern O...

Collaboration


Dive into the Hye-Mi Kim's collaboration.

Top Co-Authors

Avatar

Myong-In Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Peter J. Webster

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daehyun Kim

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongmin Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiabao Wang

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Violeta E. Toma

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yang Zhou

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge