Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hye Ryung Byon is active.

Publication


Featured researches published by Hye Ryung Byon.


Nano Letters | 2013

Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles.

Eda Yilmaz; Chihiro Yogi; Keisuke Yamanaka; Toshiaki Ohta; Hye Ryung Byon

Low electrical efficiency for the lithium-oxygen (Li-O2) electrochemical reaction is one of the most significant challenges in current nonaqueous Li-O2 batteries. Here we present ruthenium oxide nanoparticles (RuO2 NPs) dispersed on multiwalled carbon nanotubes (CNTs) as a cathode, which dramatically increase the electrical efficiency up to 73%. We demonstrate that the RuO2 NPs contribute to the formation of poorly crystalline lithium peroxide (Li2O2) that is coated over the CNT with large contact area during oxygen reduction reaction (ORR). This unique Li2O2 structure can be smoothly decomposed at low potential upon oxygen evolution reaction (OER) by avoiding the energy loss associated with the decomposition of the more typical Li2O2 structure with a large size, small CNT contact area, and insulating crystals.


Energy and Environmental Science | 2011

Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors

Seung Woo Lee; Betar M. Gallant; Hye Ryung Byon; Paula T. Hammond; Yang Shao-Horn

The fast evolution of portable electronic devices and micro-electro-mechanical systems (MEMS) requires multi-functional microscale energy sources that have high power, high energy, long cycle life, and the adaptability to various substrates. Nanostructured thin-film lithium-ion batteries and electrochemical capacitors (ECs) are among the most promising energy storage devices that can meet these demands. This perspective presents an overview of recent progresses and challenges associated with the development of binder-free, carbon-based nanostructured electrodes prepared from layer-by-layer (LbL) electrostatic assembly, which provide enhanced gravimetric and volumetric energy for ECs and enhanced power capabilities for batteries. Based on promising findings for thin electrodes of several microns in thickness, LbL-based electrodes could also potentially be envisioned for portable electronics, electrified transportation, and load-leveling applications if successful scale-up to tens or hundreds of microns can be achieved.


Chemical Society Reviews | 2015

A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage

Yu Zhao; Yu Ding; Yutao Li; Lele Peng; Hye Ryung Byon; Jason B. Goodenough; Guihua Yu

Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.


Nature Communications | 2013

High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode

Yu Zhao; Lina Wang; Hye Ryung Byon

Development of promising battery systems is being intensified to fulfil the needs of long-driving-ranged electric vehicles. The successful candidates for new generation batteries should have higher energy densities than those of currently used batteries and reasonable rechargeability. Here we report that aqueous lithium-iodine batteries based on the triiodide/iodide redox reaction show a high battery performance. By using iodine transformed to triiodide in an aqueous iodide, an aqueous cathode involving the triiodide/iodide redox reaction in a stable potential window avoiding water electrolysis is demonstrated for lithium-iodine batteries. The high solubility of triiodide/iodide redox couples results in an energy density of ~ 0.33 kWh kg(-1), approximately twice that of lithium-ion batteries. The reversible redox reaction without the formation of resistive solid products promotes rechargeability, demonstrating 100 cycles with negligible capacity fading. A low cost, non-flammable and heavy-metal-free aqueous cathode can contribute to the feasibility of scale-up of lithium-iodine batteries for practical energy storage.


Nano Letters | 2014

A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.

Yu Zhao; Misun Hong; Nadège Bonnet Mercier; Guihua Yu; Hee Cheul Choi; Hye Ryung Byon

A lithium-iodine (Li-I2) cell using the triiodide/iodide (I3(-)/I(-)) redox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (∼ 330 W h kg(-1) and ∼ 650 W h L(-1), respectively, from saturated I2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I3(-)/I(-) aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I3(-)/I(-) redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.


Journal of the American Chemical Society | 2013

In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.

Rui Wen; Misun Hong; Hye Ryung Byon

Understanding the lithium-oxygen (Li-O2) electrochemical reaction is of importance to improve reaction kinetics, efficiency, and mitigate parasitic reactions, which links to the strategy of enhanced Li-O2 battery performance. Many in situ and ex situ analyses have been reported to address chemical species of reduction intermediate and products, whereas details of the dynamic Li-O2 reaction have not as yet been fully unraveled. For this purpose, visual imaging can provide straightforward evidence, formation and decomposition of products, during the Li-O2 electrochemical reaction. Here, we present real-time and in situ views of the Li-O2 reaction using electrochemical atomic force microscopy (EC-AFM). Details of the reaction process can be observed at nano-/micrometer scale on a highly oriented pyrolytic graphite (HOPG) electrode with lithium ion-containing tetraglyme, representative of the carbon cathode and ether-based electrolyte extensively employed in the Li-O2 battery. Upon oxygen reduction reaction (ORR), rapid growth of nanoplates, having axial diameter of hundreds of nanometers, length of micrometers, and ~5 nm thickness, at a step edge of HOPG can be observed, which eventually forms a lithium peroxide (Li2O2) film. This Li2O2 film is decomposed during the oxygen evolution reaction (OER), for which the decomposition potential is related to a thickness. There is no evidence of byproduct analyzed by X-ray photoelectron spectroscopy (XPS) after first reduction and oxidation reaction. However, further cycles provide unintended products such as lithium carbonate (Li2CO3), lithium acetate, and fluorine-related species with irregular morphology due to the degradation of HOPG electrode, tetraglyme, and lithium salt. These observations provide the first visualization of Li-O2 reaction process and morphological information of Li2O2, which can allow one to build strategies to prepare the optimum conditions for the Li-O2 battery.


Journal of Physical Chemistry Letters | 2012

Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.

Hyunseob Lim; Eda Yilmaz; Hye Ryung Byon

Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.


Nano Letters | 2016

Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li–O2 Batteries

Chunzhen Yang; Raymond A. Wong; Misun Hong; Keisuke Yamanaka; Toshiaki Ohta; Hye Ryung Byon

In lithium-oxygen (Li-O2) batteries, it is believed that lithium peroxide (Li2O2) electrochemically forms thin films with thicknesses less than 10 nm resulting in capacity restrictions due to limitations in charge transport. Here we show unexpected Li2O2 film growth with thicknesses of ∼60 nm on a three-dimensional carbon nanotube (CNT) electrode incorporated with cerium dioxide (ceria) nanoparticles (CeO2 NPs). The CeO2 NPs favor Li2O2 surface nucleation owing to their strong binding toward reactive oxygen species (e.g., O2 and LiO2). The subsequent film growth results in thicknesses of ∼40 nm (at cutoff potential of 2.2 V vs Li/Li(+)), which further increases up to ∼60 nm with the addition of trace amounts of H2O that enhances the solution free energy. This suggests the involvement of solvated superoxide species (LiO2(sol)) that precipitates on the existing Li2O2 films to form thicker films via disproportionation. By comparing toroidal Li2O2 formed solely from LiO2(sol), the thick Li2O2 films formed from surface-mediated nucleation/thin-film growth following by LiO2(sol) deposition provides the benefits of higher reversibility and rapid surface decomposition during recharge.


Scientific Reports | 2015

A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li-O2 batteries

Nadège Bonnet-Mercier; Raymond A. Wong; Morgan L. Thomas; Arghya Dutta; Keisuke Yamanaka; Chihiro Yogi; Toshiaki Ohta; Hye Ryung Byon

The application of conventional solid polymer electrolyte (SPE) to lithium-oxygen (Li–O2) batteries has suffered from a limited active reaction zone due to thick SPE and subsequent lack of O2 gas diffusion route in the positive electrode. Here we present a new design for a three-dimensional (3-D) SPE structure, incorporating a carbon nanotube (CNT) electrode, adapted for a gas-based energy storage system. The void spaces in the porous CNT/SPE film allow an increased depth of diffusion of O2 gas, providing an enlarged active reaction zone where Li+ ions, O2 gas, and electrons can interact. Furthermore, the thin SPE layer along the CNT, forming the core/shell nanostructure, aids in the smooth electron transfer when O2 gas approaches the CNT surface. Therefore, the 3-D CNT/SPE electrode structure enhances the capacity in the SPE-based Li–O2 cell. However, intrinsic instability of poly(ethylene oxide) (PEO) of the SPE matrix to superoxide (O2·−) and high voltage gives rise to severe side reactions, convincing us of the need for development of a more stable electrolyte for use in this CNT/SPE design.


Nature Nanotechnology | 2007

Carbon nanotube guided formation of silicon oxide nanotrenches

Hye Ryung Byon; Hee Cheul Choi

The potential applications of carbon nanotubes are varied. Although it has long been known that solid carbon can reduce SiO2 to its gaseous state at high temperatures, exploiting this reaction to pattern surfaces with carbon nanotubes has never been demonstrated. Here we show that carbon nanotubes can act as the carbon source to reduce (etch) silicon dioxide surfaces. By introducing small amounts of oxygen gas during the growth of single-walled carbon nanotubes (SWNTs) in the chemical vapour deposition (CVD) process, the nanotubes selectively etch one-dimensional nanotrenches in the SiO2. The shape, length and trajectory of the nanotrenches are fully guided by the SWNTs. These nanotrenches can also serve as a mask in the fabrication of sub-10-nm metal nanowires. Combined with alignment techniques, well-ordered nanotrenches can be made for various high-density electronic components in the nanoelectronics industry.

Collaboration


Dive into the Hye Ryung Byon's collaboration.

Top Co-Authors

Avatar

Hee Cheul Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Misun Hong

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Zhao

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Arghya Dutta

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Morgan L. Thomas

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar

Yang Shao-Horn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge