Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hye-Shin Chung is active.

Publication


Featured researches published by Hye-Shin Chung.


Protein Expression and Purification | 2002

Preparation of active recombinant cathepsin K expressed in bacteria as inclusion body.

Hyo-Sung Hwang; Hye-Shin Chung

Human cathepsin K (EC 3.4.22.38) is a member of the cysteine protease family with high primary sequence homology to cathepsins S, L, and B. It has been shown that cathepsin K plays a major role in the resorption of the bone matrix by osteoclasts. Cathepsin K has a potential as a drug target for the diseases related to bone matrix metabolism such as osteoporosis. We have expressed recombinant human procathepsin K in Escherichia coli as inclusion bodies. Purified procathepsin K had size of 38kDa which is in agreement with the predicted mass of the construct. Refolding was done by rapid dilution into 50mM Tris-HCl, pH 8.0 buffer containing 5mM EDTA, 10 mM GSH, 1mM GSSG, 0.7 M L-arginine, 0.5 M NaCl, and 1% CHAPS and further dialysis against 25 mM Tris-HCl, pH 8.0 containing 0.5 M NaCl. Mature active cathepsin K was prepared from refolded procathepsin K by incubating at 40 degrees C in pH 4.0 buffers with or without pepsin or cysteine. The presence of pepsin or cysteine in autocatalysis buffer did not have effect on the degree of conversion of nascent to mature cathepsin K, but reduced the autocatalysis time slightly. Proteolytic activity was confirmed using synthetic substrate, and Western blotting identified mature cathepsin K. Active cathepsin K had type I and II collagenolytic activities which could be inhibited by E-64.


Glycoconjugate Journal | 2013

N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells

Kyung-Jin Lee; Sang Mee Lee; Jin Young Gil; Ohsuk Kwon; Jin Young Kim; Soon Jae Park; Hye-Shin Chung; Doo-Byoung Oh

Human alpha-1-antitrypsin (α1AT) is a glycoprotein with protease inhibitor activity protecting tissues from degradation. Patients with inherited α1AT deficiency are treated with native α1AT (nAT) purified from human plasma. In the present study, recombinant α1AT (rAT) was produced in Chinese hamster ovary (CHO) cells and their glycosylation patterns, inhibitory activity and in vivo half-life were compared with those of nAT. A peptide mapping analysis employing a deglycosylation reaction confirmed full occupancy of all three glycosylation sites and the equivalency of rAT and nAT in terms of the protein level. N-glycan profiles revealed that rAT contained 10 glycan structures ranging from bi-antennary to tetra-antennary complex-type glycans while nAT displayed six peaks comprising majorly bi-antennary glycans and a small portion of tri-antennary glycans. In addition, most of the rAT glycans were shown to have only core α(1 - 6)-fucose without terminal fucosylation, whereas only minor portions of the nAT glycans contained core or Lewis X-type fucose. As expected, all sialylated glycans of rAT were found to have α(2 - 3)-linked sialic acids, which was in sharp contrast to those of nAT, which had mostly α(2 - 6)-linked sialic acids. However, the degree of sialylation of rAT was comparable to that of nAT, which was also supported by an isoelectric focusing gel analysis. Despite the differences in the glycosylation patterns, both α1ATs showed nearly equivalent inhibitory activity in enzyme assays and serum half-lives in a pharmacokinetic experiment. These results suggest that rAT produced in CHO cells would be a good alternative to nAT derived from human plasma.


Bioresource Technology | 2013

Increased thermal stability of cold-adapted esterase at ambient temperatures by immobilization on graphene oxide

Heeyoung Lee; Hae Kyung Jeong; Jinwoo Han; Hye-Shin Chung; Sei-Heon Jang; ChangWoo Lee

In this study, the effect of graphene oxide (GO) on the thermal stability of a recombinant esterase from cold-adapted Pseudomonas mandelii, rEstKp, was investigated. The complex GO-rEstKp was formed by cross-linking. Both free rEstKp and GO-rEstKp complex showed similar optimum pH and temperatures. GO-rEstKp complex exhibited enhanced thermal stability at ambient temperatures than rEstKp, which prevented the denaturation of the enzyme by hydrophilic interactions. However, the catalytic efficiency of GO-rEstKp complex was lowered to approximately 40% of that of free rEstKp. This study provides an insight into the addition of GO for industrial applications of cold-adapted enzymes at ambient temperatures.


Regulatory Peptides | 2011

The N-terminal alanine-extended GLP-1/IgG-Fc fusion protein confers resistance to DPP-IV and reduces serum glucose level in db/db mice

Hye-Shin Chung; Ji-Yeon Oh; Seung-Bum Yoo; Sang Mee Lee; Heung-Soo Cho

The aim of this study was to develop novel long-acting glucagon-like peptide 1 (GLP-1) analogs resistant to dipeptidyl peptidase-IV (DPP-IV). We constructed three fusion proteins comprising GLP-1 and the human immunoglobulin gamma heavy chain (IgG-Fc); wild-type GLP-1 and IgG-Fc (GLP-1/IgG-Fc) and two N-terminal-extended fusion proteins in which an additional Ala (A) or Gly (G) was located on the N-terminus of GLP-1 (A-GLP-1/IgG-Fc or G-GLP-1/IgG-Fc). The fusion proteins expressed in CHO-K1 cells were secreted into medium and purified by Protein A affinity chromatography. Here, we show that the Ala or Gly-extended GLP-1/IgG-Fc fusion protein is resistant to DPP-IV and has increased half-life in vivo. To our surprise, the A-GLP-1/IgG-Fc fusion protein was more effective than wildtype GLP-1/IgG-Fc fusion protein in reducing blood glucose levels in db/db mice. Our findings suggest that the A-GLP-1/IgG-Fc fusion protein could be a potential long-acting GLP-1 receptor agonist for the treatment of insulin-resistant type 2 diabetes.


Journal of Biochemistry and Molecular Biology | 2013

Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes

Yong-Mo Kim; Sang Mee Lee; Hye-Shin Chung

Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and β-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo (t1/2 <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA. [BMB Reports 2013; 46(12): 606-610]


Extremophiles | 2016

Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

Ngoc Truongvan; Hye-Shin Chung; Sei-Heon Jang; ChangWoo Lee

An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.


Journal of Biochemistry and Molecular Biology | 2011

A fluorogenic method for measuring enteropeptidase activity: spectral shift in the emission of GD4K-conjugated 7-amino-4-methylcoumarin.

Mal-Gi Choi; Eungyeong Lee; Hye-Shin Chung; Sei-Heon Jang; ChangWoo Lee

Enteropeptidase is a serine protease secreted by the pancreas and converts inactive trypsinogen to active trypsin. Enteropeptidase cleaves the C-terminal end of the substrate recognition sequence Asp-Asp-Asp-Asp-Lys (D(4)K). The assay for enteropeptidase has utilized GD(4)K-conjugated 2-naphthylamine (GD(4)K-NA) as a fluorogenic probe over the last 30 years. However, no other D(4)K-conjugated fluorogenic substrates of enteropeptidase have been reported. Furthermore, naphthalene is known as carcinogenic to humans. In this study, we used shift in the emission spectrum of GD(4)K-conjugated 7-amino-4-methylcoumarin (GD(4)K-AMC) as a fluorogenic method to measure enteropeptidase activity. The kinetic analysis revealed that enteropeptidase has a K(M) of 0.025 mM and a k(cat) of 65 sec(-1) for GD(4)K-AMC, whereas it has a K(M) of 0.5 to 0.6 mM and a k(cat) of 25 sec(-1) for GD(4)K-NA. The optimum pH of GD(4)K-AMC hydrolysis was pH 8.0. Our data indicate that GD(4)K-AMC is more suitable as a substrate for enteropeptidase than GD(4)K-NA.


PLOS ONE | 2017

Role of the P2 residue of human alpha 1-antitrypsin in determining target protease specificity

Hye-Shin Chung; Ji-Sun Kim; Sang Mee Lee; Soon Jae Park

Alpha 1-antitrypsin (A1AT) is a serine protease inhibitor that mainly inhibits neutrophil elastase in the lungs. A variant of A1AT at the P1 position with methionine 358 to arginine (A1AT-Pittsburgh) is a rapid inhibitor of thrombin with greatly diminished anti-elastase activity. The P2 residue (position 357) of A1AT-Pittsburgh has been shown to play an important role in interactions with thrombin and kallikrein, but the role of P2 residue in wild-type A1AT has largely been unraveled. Here, we investigated the effects of P2 proline substitutions in wild-type A1AT on interactions with porcine pancreatic elastase (PPE) and human neutrophil elastase (HNE). The mutant A1AT proteins (P357A, P357D, P357K, P357L, P357N, P357S, and P357W) were less efficient than the wild-type A1AT at inhibiting PPE and HNE. Among the mutants, P357D did not form a complex with PPE, whereas P357L, P357N, and P357W showed significantly reduced complex formation with PPE. Surprisingly, mass spectrometry analysis revealed that P357D had two cleavage sites after the P9 alanine and the P3 isoleucine residues. Our results indicate that the size and negative charge of the R group of the P2 residue influence the interaction with elastases. Specifically, the negative charge at the P2 residue is disfavored and the resulting conformational changes in the reactive center loop upon interaction with PPE lead to cleavage at new sites. Overall, the results of this study demonstrate a previously unknown role for P2 residue in determining inhibitory specificity of A1AT.


PLOS ONE | 2016

Oxidation Protection in Metal-Binding Peptide Motif and Its Application to Antibody for Site-Selective Conjugation.

Hye-Shin Chung; Sunbae Lee; Soon Jae Park

Here, we demonstrate that a metal ion binding motif could serve as an efficient and robust tool for site-specific conjugation strategy. Cysteine-containing metal binding motifs were constructed as single repeat or tandem repeat peptides and their metal binding characteristics were investigated. The tandem repeats of the Cysteine-Glycine-Histidine (CGH) metal ion binding motif exhibited concerted binding to Co(II) ions, suggesting that conformational transition of peptide was triggered by the sequential metal ion binding. Evaluation of the free thiol content after reduction by reducing reagent showed that metal-ion binding elicited strong retardation of cysteine oxidation in the order of Zn(II)>Ni(II)>Co(II). The CGH metal ion binding motif was then introduced to the C-terminus of antibody heavy chain and the metal ion-dependent characteristics of oxidation kinetics were investigated. As in the case of peptides, CGH-motif-introduced antibody exhibited strong dependence on metal ion binding to protect against oxidation. Zn(II)-saturated antibody with tandem repeat of CGH motif retains the cysteine reactivity as long as 22 hour even with saturating O2 condition. Metal-ion dependent fluorophore labeling clearly indicated that metal binding motifs could be employed as an efficient tool for site-specific conjugation. Whereas Trastuzumab without a metal ion binding site exhibited site-nonspecific dye conjugation, Zn(II) ion binding to antibody with a tandem repeat of CGH motif showed that fluorophores were site-specifically conjugated to the heavy chain of antibody. We believe that this strong metal ion dependence on oxidation protection and the resulting site-selective conjugation could be exploited further to develop a highly site-specific conjugation strategy for proteins that contain multiple intrinsic cysteine residues, including monoclonal antibodies.


한국생화학회지 | 1993

Properties of Alkaline Protease Isolated from Nocardiopsis dassonvillei

Mi-Jung Kim; Hye-Shin Chung; Soon-Jae Park

Collaboration


Dive into the Hye-Shin Chung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doo-Byoung Oh

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge