Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyeok Jin Ko is active.

Publication


Featured researches published by Hyeok Jin Ko.


Molecules and Cells | 2010

An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity

Hee Jin Lee; Saeyoung Lee; Hyeok Jin Ko; Kyoung Heon Kim; In Geol Choi

Molecular function of the expansin superfamily has been highlighted for cellulosic biomass conversion. In this report, we identified a new bacterial expansin subfamily by analysis of related bacterial sequences and biochemically examined a member of this new subfamily from Hahella chejuensis (HcEXLX2). Among the various complex polysaccharides tested, HcEXLX2 bound most efficiently to cellulose. The relative binding constant (Kr) against Avicel was 2.1 L g−1 at pH 6.0 and 4°C. HcEXLX2 enhanced the activity of cellulase, producing about 4.6 times more hydrolysis product after a 36 h reaction relative to when only cellulase was used. The extension strength test on filter paper indicated that HcEXLX2 has a texture loosening effect on filter paper, which was 53% of that observed for 8 M urea treatment. These activities, compared with a cellulose binding domain from Clostridium thermocellum, implied that the synergistic effect of HcEXLX2 comes from not only binding to cellulose but also disrupting the hydrogen bonds in cellulose. Based on these results, we suggest that the new bacterial expansin subfamily functions by binding to cell wall polysaccharides and increasing the accessibility of cell wall degrading enzymes.


Biochemical and Biophysical Research Communications | 2011

Crystal structure of a key enzyme in the agarolytic pathway,α-neoagarobiose hydrolase from Saccharophagus degradans 2–40

Sung Chul Ha; Saeyoung Lee; Jonas Lee; Hee Taek Kim; Hyeok Jin Ko; Kyoung Heon Kim; In Geol Choi

In agarolytic microorganisms, α-neoagarobiose hydrolase (NABH) is an essential enzyme to metabolize agar because it converts α-neoagarobiose (O-3,6-anhydro-alpha-l-galactopyranosyl-(1,3)-d-galactose) into fermentable monosaccharides (d-galactose and 3,6-anhydro-l-galactose) in the agarolytic pathway. NABH can be divided into two biological classes by its cellular location. Here, we describe a structure and function of cytosolic NABH from Saccharophagus degradans 2-40 in a native protein and d-galactose complex determined at 2.0 and 1.55 Å, respectively. The overall fold is organized in an N-terminal helical extension and a C-terminal five-bladed β-propeller catalytic domain. The structure of the enzyme-ligand (d-galactose) complex predicts a +1 subsite in the substrate binding pocket. The structural features may provide insights for the evolution and classification of NABH in agarolytic pathways.


Environmental Microbiology | 2015

The novel catabolic pathway of 3,6‐anhydro‐L‐galactose, the main component of red macroalgae, in a marine bacterium

Eun Ju Yun; Saeyoung Lee; Hee Taek Kim; Jeffrey G. Pelton; Sooah Kim; Hyeok Jin Ko; In Geol Choi; Kyoung Heon Kim

The catabolic fate of the major monomeric sugar of red macroalgae, 3,6-anhydro-L-galactose (AHG), is completely unknown in any organisms. AHG is not catabolized by ordinary fermentative microorganisms, and it hampers the utilization of red macroalgae as renewable biomass for biofuel and chemical production. In this study, metabolite and transcriptomic analyses of Vibrio sp., a marine bacterium capable of catabolizing AHG as a sole carbon source, revealed two key metabolic intermediates of AHG, 3,6-anhydrogalactonate (AHGA) and 2-keto-3-deoxy-galactonate; the corresponding genes were verified in vitro enzymatic reactions using their recombinant proteins. Oxidation by an NADP(+) -dependent AHG dehydrogenase and isomerization by an AHGA cycloisomerase are the two key AHG metabolic processes. This newly discovered metabolic route was verified in vivo by demonstrating the growth of Escherichia coli harbouring the genes of these two enzymes on AHG as a sole carbon source. Also, the introduction of only these two enzymes into an ethanologenic E. coli strain increased the ethanol production in E. coli by fermenting both AHG and galactose in an agarose hydrolysate. These findings provide not only insights for the evolutionary adaptation of a central metabolic pathway to utilize uncommon substrates in microbes, but also a metabolic design principle for bioconversion of red macroalgal biomass into biofuels or industrial chemicals.


Journal of Bacteriology | 2011

Complete Genome Sequence of a Carbon Monoxide-Utilizing Acetogen, Eubacterium limosum KIST612

Hanseong Roh; Hyeok Jin Ko; Daehee Kim; Dong Geon Choi; Shinyoung Park; Su Jin Kim; In Seop Chang; In Geol Choi

Eubacterium limosum KIST612 is an anaerobic acetogenic bacterium that uses CO as the sole carbon/energy source and produces acetate, butyrate, and ethanol. To evaluate its potential as a syngas microbial catalyst, we have sequenced the complete 4.3-Mb genome of E. limosum KIST612.


Applied Microbiology and Biotechnology | 2013

Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose.

In Jung Kim; Hyeok Jin Ko; Tae Wan Kim; Ki Hyun Nam; In Geol Choi; Kyoung Heon Kim

BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus xgiganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.


Journal of Bacteriology | 2012

Genome Sequence of Vibrio sp. Strain EJY3, an Agarolytic Marine Bacterium Metabolizing 3,6-Anhydro-l-Galactose as a Sole Carbon Source

Hanseong Roh; Eun Ju Yun; Saeyoung Lee; Hyeok Jin Ko; Su Jin Kim; Byung Yong Kim; Heesang Song; Kwang il Lim; Kyoung Heon Kim; In Geol Choi

The metabolic fate of 3,6-anhydro-L-galactose (L-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize L-AHG as a sole carbon source. To elucidate the metabolic pathways of L-AHG, we have sequenced the complete genome of Vibrio sp. strain EJY3.


Biotechnology and Bioengineering | 2013

Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose.

In Jung Kim; Hyeok Jin Ko; Tae Wan Kim; In Geol Choi; Kyoung Heon Kim

Plant expansin proteins induce plant cell wall extension and have the ability to extend and disrupt cellulose. In addition, these proteins show synergistic activity with cellulases during cellulose hydrolysis. BsEXLX1 originating from Bacillus subtilis is a structural homolog of a β‐expansin produced by Zea mays (ZmEXPB1). The Langmuir isotherm for binding of BsEXLX1 to microcrystalline cellulose (i.e., Avicel) revealed that the equilibrium binding constant of BsEXLX1 to Avicel was similar to those of other Type A surface‐binding carbohydrate‐binding modules (CBMs) to microcrystalline cellulose, and the maximum number of binding sites on Avicel for BsEXLX1 was also comparable to those on microcrystalline cellulose for other Type A CBMs. BsEXLX1 did not bind to cellooligosaccharides, which is consistent with the typical binding behavior of Type A CBMs. The preferential binding pattern of a plant expansin, ZmEXPB1, to xylan, compared to cellulose was not exhibited by BsEXLX1. In addition, the binding capacities of cellulose and xylan for BsEXLX1 were much lower than those for CtCBD3. Biotechnol. Bioeng. 2013; 110: 401–407.


Journal of Bacteriology | 2011

Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032.

Hanseong Roh; Gabriel C. Uguru; Hyeok Jin Ko; Su Jin Kim; Byung Yong Kim; Michael Goodfellow; Alan T. Bull; Kyoung Heon Kim; Mervyn J. Bibb; In Geol Choi; James E. M. Stach

Verrucosispora maris AB-18-032 is a marine actinomycete that produces atrop-abyssomicin C and proximicin A, both of which have novel structures and modes of action. In order to understand the biosynthesis of these compounds, to identify further biosynthetic potential, and to facilitate rational improvement of secondary metabolite titers, we have sequenced the complete 6.7-Mb genome of Verrucosispora maris AB-18-032.


Molecules and Cells | 2010

Molecular characterization of a novel bacterial aryl acylamidase belonging to the amidase signature enzyme family

Hyeok Jin Ko; Eun Woo Lee; Won Gi Bang; Cheol Koo Lee; Kyoung Heon Kim; In Geol Choi

In seeking aryl acylamidase (EC 3.5.1.13) acting on an amide bond in p-acetaminophenol (Tylenol™), we identified a novel gene encoding 496 residues of a protein. The gene revealed a conserved amidase signature region with a canonical catalytic triad. The gene was expressed in E. coli and characterized for its biochemical properties. The optimum pH and temperature for the activity on p-acetaminophenol were 10 and 37°C, respectively. The half-life of enzyme activity at 37°C was 192 h and 90% of its activity remained after 3 h incubation at 40°C. Divalent metals was found to inhibit the activity of enzyme. The Km values for various aryl acylamides such as 4-nitroacetanilide, p-acetaminophenol, phenacetin, 4-chloroacetanilide and acetanilide were 0.10, 0.32, 0.83, 1.9 and 19 mM, respectively. The reverse reaction activity (amide synthesis) was also examined using various chain lengths (C1∼C4 and C10) of carboxylic donors and aniline as substrates. These kinetic parameters and substrate specificity in forward and reverse reaction indicated that the aryl acylamidase in this study has a preference for aryl substrate having polar functional groups and hydrophobic carboxylic donors.


Environmental Microbiology | 2015

Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

Jieun An; Hyeji Kwon; Eun Jung Kim; Young Mi Lee; Hyeok Jin Ko; Hongjae Park; In Geol Choi; Sooah Kim; Kyoung Heon Kim; Wankee Kim; Wonja Choi

Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

Collaboration


Dive into the Hyeok Jin Ko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bong Hyun Sung

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge