Hyeon S. Son
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyeon S. Son.
Biophysical Journal | 1997
Phillip C. Biggin; Jason Breed; Hyeon S. Son; Mark S.P. Sansom
Alamethicin is an alpha-helical peptide that forms voltage-activated ion channels. Experimental data suggest that channel formation occurs via voltage-dependent insertion of alamethicin helices into lipid bilayers, followed by self-assembly of inserted helices to form a parallel helix bundle. Changes in the kink angle of the alamethicin helix about its central proline residue have also been suggested to play a role in channel gating. Alamethicin helices generated by simulated annealing and restrained molecular dynamics adopt a kink angle similar to that in the x-ray crystal structure, even if such simulations start with an idealized unkinked helix. This suggests that the kinked helix represents a stable conformation of the molecule. Molecular dynamics simulations in the presence of a simple bilayer model and a transbilayer voltage difference are used to explore possible mechanisms of helix insertion. The bilayer is represented by a hydrophobicity potential. An alamethicin helix inserts spontaneously in the absence of a transbilayer voltage. Application of a cis positive voltage decreases the time to insertion. The helix kink angle fluctuates during the simulations. Insertion of the helix is associated with a decrease in the mean kink angle, thus helping the alamethicin molecule to span the bilayer. The simulation results are discussed in terms of models of alamethicin channel gating.
Journal of Cellular Biochemistry | 2007
Nam Hyun Kim; Kyunghoon Kim; Weon Seo Park; Hyeon S. Son; Youngmee Bae
Ceramide is a sphingolipid that is abundant in the plasma membrane of neuronal cells and is thought to have regulatory roles in cell differentiation and cell death. Ceramide is known to induce apoptosis in a variety of different cell types, whereas the physiological significance of gangliosides, another class of sphingolipids, in these processes is still unclear. We examined the mechanisms of ceramide‐induced cell death using a human neuroblastoma cell line. Treatment of the human neuroblastoma cell line SH‐SY5Y with ceramide induced dephosphorylation of the PKB/Akt kinase and subsequent mitochondrial dysfunction. In addition, ceramide‐induced neuronal cell death was not completely blocked by inhibition of caspase activity. This incomplete inhibition appeared to be attributable to the translocation of apoptosis‐inducing factor to the nucleus. Furthermore, overexpression of active PKB/Akt or Bcl‐2 successfully blocked ceramide‐induced neuronal cell death through inhibition of the translocation of apoptosis‐inducing factor. J. Cell. Biochem. 102: 1160–1170, 2007.
European Journal of Epidemiology | 2006
Insung Ahn; Byeong-Jin Jeong; Se-Eun Bae; Jin Jung; Hyeon S. Son
This study was designed to conduct genomic analysis in two steps, such as the overall relative synonymous codon usage (RSCU) analysis of the five virus species in the orthomyxoviridae family, and more intensive pattern analysis of the four subtypes of influenza A virus (H1N1, H2N2, H3N2, and H5N1) which were isolated from human population. All the subtypes were categorized by their isolated regions, including Asia, Europe, and Africa, and most of the synonymous codon usage patterns were analyzed by correspondence analysis (CA). As a result, influenza A virus showed the lowest synonymous codon usage bias among the virus species of the orthomyxoviridae family, and influenza B and influenza C virus were followed, while suggesting that influenza A virus might have an advantage in transmitting across the species barrier due to their low codon usage bias. The ENC values of the host-specific HA and NA genes represented their different HA and NA types very well, and this reveals that each influenza A virus subtype uses different codon usage patterns as well as the amino acid compositions. In NP, PA and PB2 genes, most of the virus subtypes showed similar RSCU patterns except for H5N1 and H3N2 (A/HK/1774/1999) subtypes which were suspected to be transmitted across the species barrier, from avian and porcine species to human beings, respectively. This distinguishable synonymous codon usage patterns in non-human origin viruses might be useful in determining the origin of influenza A viruses in genomic levels as well as the serological tests. In this study, all the process, including extracting sequences from GenBank flat file and calculating codon usage values, was conducted by Java codes, and these bioinformatics-related methods may be useful in predicting the evolutionary patterns of pandemic viruses.
Experimental and Molecular Medicine | 2006
Byung-Woo Kim; Hyeon S. Son
It has been shown that neural cell adhesion molecule (NCAM)-induced neuronal differentiation is extracellular signal-regulated kinase (ERK)-dependent. However, an involvement of the mitogen activated protein kinase (MAPK) kinase (MEK), an upstream kinase of ERK, has not been directly demonstrated in this process. Therefore, we investigated whether the MEK1 plays a critical role in the NCAM-induced neuronal differentiation of hippocampal neural progenitor cells (NPCs). NPCs were transiently transfected with expression plasmids encoding activated or dominant negative (DN) forms of MEK1. The expression of DN MEK1 inhibited neuronal phenotype acquisition and soluble NCAM rescued the defect in the neuronal phenotype acquisition in DN-MEK1-transfected cells, suggesting that NCAM might contribute to the neuronal differentiation via distinct, parallel pathways including the MEK pathway. In cells expressing wild type MEK1 or constitutively active MEK1 on the other hand, the percentage of cells positive for β-tubulin type III (Tuj1), a marker for early postmitotic neurons, was higher than seen in vector-transfected cells. These results suggest that the activation of MEK1 is required for obtaining neuronal phenotype in NPCs.
Virus Genes | 2012
Insung Ahn; Hyeon S. Son
This study investigated genetic variations in eight major genes (hemagglutinin, HA; neuraminidase, NA; matrix protein, MP; non-structural protein, NS; nucleoprotein, NP; polymerase, PA; PA basic protein 1, PB1; and PA basic protein 2, PB2) of the influenza A virus subtype H3N2 (A/H3N2) to determine the evolutionary pattern in codon bias. A total of 6,881 sequences isolated between 1993 and 2010 were used. The relative synonymous codon usage (RSCU) and G+C% content at the three codon positions were analyzed by calculating the codon substitution patterns were analyzed by calculating the percentage of synonymously substituted codons (SSCs) and that of codons substituted to the same codon within each synonymous codon group (EMC) between 1993 and subsequent years. In the multivariate analysis of RSCU, we observed directional changes in HA, NA, PB1, and PB2, and these changes were significantly correlated with the variation in the G+C contents at the first (GC1st) and second (GC2nd) codon positions over time. These directional changes in HA and NA appear to affect their antigenic characteristics by altering their SSCs gradually, and NP, PA, PB1, and PB2 genes also continuously changed their substitution patterns by accumulating the decrements of EMC values over a long term. Our findings suggest that, in human populations, A/H3N2 viruses have gradually changed their SSCs in two external genes, HA and NA, and that these accumulated alteration patterns may result in the antigenic changes over time. Moreover, A/H3N2 viruses also appear to change synonymous codon usage patterns in NP, PA, PB1, and PB2 genes by accumulating decrements in EMCs within synonymous codon groups over time.
Canadian Journal of Microbiology | 2007
Insung AhnI. Ahn; Hyeon S. Son
To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.
Experimental and Molecular Medicine | 2002
Sang-Hun Lee; Mi-Yoon Chang; Dae-Joon Jeon; Dong-Yul Oh; Hyeon S. Son; Chang-Ho Lee; Young-Seek Lee; Yong-Sung Lee
Cocaine analogue, CFT (2β-carbomethoxy-3β-(4-fluorophenyl) tropane) binding to dopamine transporter (DAT) in different species is quite heterogeneous. CFT is scarcely detected in bovine DAT whereas it is conspicuous in humans. To examine the structural basis for this functional discrepancy, we analyzed transporter chimeras of these two DATs. The CFT binding activities are avid in all of the chimeric DATs of which both of the 3rd and the 6-8th transmembrane domain (TM) are composed of human DAT sequences. On the contrary, CFT binding activities were scarcely detected if either or both of two regions are replaced with bovine sequences. These findings indicate that the CFT binding absolutely requires human DAT sequences, at least, in the regions encompassing the 3rd and 6-8th transmembrane domain (TM), and that these regions might contribute to form the 3-dimensional pocket for CFT binding.
European Biophysics Journal | 2000
Hyeon S. Son; Mark S.P. Sansom
Abstract Bacteriorhodopsin (BR) is a membrane protein which pumps protons through the plasma membrane. Transmembrane BR helical segments are subjected to simulation studies in order to investigate the effect of bilayer environment in various simulation conditions. A bilayer potential is introduced to the system to mimic the lipid membrane. The structures from the simulations are compared with the experimentally determined structures in terms of geometrical properties. Electrostatic contribution to the helix packing is also investigated. The simulation results show that the packing geometry of the transmembrane helices is highly affected by the bilayer potential. The results obtained from the simulations may be used for further simulation studies and analysis in investigating transmembrane helix packing.
European Biophysics Journal | 1999
Hyeon S. Son; Mark S. P. Sansom
Abstract The aim of this study is to investigate if the packing motifs of native transmembrane helices can be produced by simulations with simple potentials and to develop a method for the rapid generation of initial candidate models for integral membrane proteins composed of bundles of transmembrane helices. Constituent residues are mapped along the helix axis in order to maintain the amino acid sequence-dependent properties of the helix. Helix packing is optimized according to a semi-empirical potential mainly composed of four components: a bilayer potential, a crossing angle potential, a helix dipole potential and a helix-helix distance potential. A Monte Carlo simulated annealing protocol is employed to optimize the helix bundle system. Necessary parameters are derived from theoretical studies and statistical analysis of experimentally determined protein structures. Preliminary testing of the method has been conducted with idealized seven Ala20 helix bundles. The structures generated show a high degree of compactness. It was observed that both bacteriorhodopsin-like and δ-endotoxin-like structures are generated in seven-helix bundle simulations, within which the composition varies dependent upon the cooling rate. The simulation method has also been employed to explore the packing of N = 4 and N = 12 transmembrane helix bundles. The results suggest that seven and 12 transmembrane helix bundles resembling those observed experimentally (e.g., bacteriorhodopsin, rhodopsin and cytochrome c oxidase subunit I) may be generated by simulations using simple potentials.
Bioinformatics | 2006
Hyeon S. Son; Seung-Yeon Kim; Jooyoung Lee; Kyu-Kwang Han
MOTIVATION Conventional Monte Carlo and molecular dynamics simulations of proteins in the canonical ensemble are of little use, because they tend to get trapped in states of energy local minima at low temperatures. One way to surmount this difficulty is to use a non-Boltzmann sampling method in which conformations are sampled upon a general weighting function instead of the conventional Boltzmann weighting function. The multiensemble sampling (MES) method is a non-Boltzmann sampling method that was originally developed to estimate free energy differences between systems with different potential energies and/or at different thermodynamic states. The method has not yet been applied to studies of complex molecular systems such as proteins. RESULTS MES Monte Carlo simulations of small proteins have been carried out using a united-residue force field. The proteins at several temperatures from the unfolded to the folded states were simulated in a single MC run at a time and their equilibrium thermodynamic properties were calculated correctly. The distributions of sampled conformations clearly indicate that, when going through states of energy local minima, the MES simulation did not get trapped in them but escaped from them so quickly that all the relevant parts of conformation space could be sampled properly. A two-step folding process consisting of a collapse transition followed by a folding transition is observed. This study demonstrates that the use of MES alleviates the multiple-minima problem greatly. AVAILABILITY Available on request from the authors.