Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyeon Son is active.

Publication


Featured researches published by Hyeon Son.


Biological Psychiatry | 2011

Glutamate N-methyl-D-aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure

Nanxin Li; Rong-Jian Liu; Jason M. Dwyer; Mounira Banasr; Boyoung Lee; Hyeon Son; Xiaoyuan Li; George K. Aghajanian; Ronald S. Duman

BACKGROUND Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants or the molecular mechanisms that could account for the rapid responses. METHODS We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex neurons. RESULTS The results demonstrate that acute treatment with the noncompetitive NMDA channel blocker ketamine or the selective NMDA receptor 2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonic and anxiogenic behaviors. We also found that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (excitatory postsynaptic currents) in layer V pyramidal neurons in the prefrontal cortex and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. CONCLUSIONS The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in a mammalian target of rapamycin dependent manner.


Cell | 1996

Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase.

Hyeon Son; Robert D. Hawkins; Kelsey C. Martin; Michael Kiebler; Paul L. Huang; Mark C. Fishman; Eric R. Kandel

Nitric oxide (NO) has been implicated in hippocampal long-term potentiation (LTP), but LTP is normal in mice with a targeted mutation in the neuronal form of NO synthase (nNOS-). LTP was also normal in mice with a targeted mutation in endothelial NOS (eNOS-), but LTP in stratum radiatum of CA1 was significantly reduced in doubly mutant mice (nNOS-/eNOS-). By contrast, LTP in stratum oriens was normal in the doubly mutant mice. These results provide the first genetic evidence that NOS is involved in LTP in stratum radiatum and suggest that the neuronal and endothelial forms can compensate for each other in mice with a single mutation. They further suggest that there is also a NOS-independent component of LTP in stratum radiatum and that LTP in stratum oriens is largely NOS independent.


Journal of Neurochemistry | 2005

In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons

Chang-Hwan Park; Yang-Ki Minn; Ji-Yeon Lee; Dong Ho Choi; Mi-Yoon Chang; Jaewon Shim; Ji-Yun Ko; Hyun-Chul Koh; Min Jeong Kang; Jin Sun Kang; Duck-Joo Rhie; Yong-Sung Lee; Hyeon Son; Shin Yong Moon; Kwang-Soo Kim; Sang-Hun Lee

Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinsons disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co‐cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed‐1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (> 95%) contained neuronal or neural precursor markers and a high percentage (> 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell‐derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl‐induced depolarization and reuptake of DA. Finally, transplantation of hES‐derived DA neurons into the striatum of hemi‐parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine‐induced rotation and step‐adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES‐derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell‐derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.


Nature Medicine | 2012

Decreased expression of synapse-related genes and loss of synapses in major depressive disorder

Hyo Jung Kang; Bhavya Voleti; Tibor Hajszan; Grazyna Rajkowska; Craig A. Stockmeier; Pawel Licznerski; Ashley E. Lepack; Mahesh S. Majik; Lak Shin Jeong; Mounira Banasr; Hyeon Son; Ronald S. Duman

Previous imaging and postmortem studies have reported a lower brain volume and a smaller size and density of neurons in the dorsolateral prefrontal cortex (dlPFC) of subjects with major depressive disorder (MDD). These findings suggest that synapse number and function are decreased in the dlPFC of patients with MDD. However, there has been no direct evidence reported for synapse loss in MDD, and the gene expression alterations underlying these effects have not been identified. Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function–related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. We also identify a transcriptional repressor, GATA1, expression of which is higher in MDD and that, when expressed in PFC neurons, is sufficient to decrease the expression of synapse-related genes, cause loss of dendritic spines and dendrites, and produce depressive behavior in rat models of depression.


Journal of Neurochemistry | 2004

Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo

Jin Seuk Kim; Mi-Yoon Chang; In Tag Yu; Ju Hee Kim; Sang-Hun Lee; Yong-Sung Lee; Hyeon Son

Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1–3 mm) produced a significant increase in the number of bromodeoxyuridine (BrdU)‐positive cells in high‐density cultures, but did not increase clonal size in low‐density cultures. Lithium chloride at 1 mm (within the therapeutic range) also increased the number of cells double‐labeled with BrdU antibody and TuJ1 (a class III β‐tubulin antibody) in high‐density cultures and the number of TuJ1‐positive cells in a clone of low‐density cultures, whereas it decreased the number of glial fibrillary acidic protein‐positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindinD28k‐positive cells, and involved a phosphorylated extracellular signal‐regulated kinase and phosphorylated cyclic AMP response element‐binding protein‐dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindinD28k‐positive neuronal cell type.


Journal of Neurochemistry | 2003

Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression

Ju-Yeon Kim; Hyun Chul Koh; Ji-Yeon Lee; Mi-Yoon Chang; You-Chan Kim; Hee-Yong Chung; Hyeon Son; Yong-Sung Lee; Lorenz Studer; Ron McKay; Sang-Hun Lee

In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinsons disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinsons disease.


Brain Research | 2004

Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro.

Jong Bin Kim; Jae Yeol Ju; Ju Hee Kim; T. W. Kim; Byung-Hwan Yang; Yong-Sung Lee; Hyeon Son

Activation of glucocorticoid receptor (GR) induces a reduction of adult hippocampal neurogenesis found in dentate gyrus (DG). However, the nature of specific effects by glucocorticoid in hippocampal neurogenesis is not known. In this report, we show differential effects of dexamethasone (DEX), a glucocorticoid receptor agonist, on proliferation and functional differentiation of adult hippocampal progenitor cells in DG. Two-month-old adult rats received daily injections of DEX for 9 days and were sacrificed 12 h and 28 days after the ninth injection. Proliferation assays showed that DEX inhibited proliferation of neural progenitor cells and the inhibitory effects of DEX was not detected 28 days after recovery. Functional differentiation studies using B-cell lymphoma protein-2 (Bcl-2), brain-derived neurotrophic factor (BDNF), p-ERK, and neuronal nuclear protein (NeuN) antibodies revealed that the expressions of Bcl-2 and BDNF were not significantly different between control and DEX-treated rats. In contrast, however, the activation of extracellular signal-regulated kinase (ERK) was downregulated 12 h, but not 28 days, after the DEX treatment. When adult hippocampal progenitor cell cultures were treated with subchronic DEX, proliferation of the progenitor cells was suppressed. Taken these in vitro and in vivo results together, it is concluded that glucocorticoid receptor activation blocks only proliferation, but not differentiation, in hippocampal neurogenesis.


Neuropharmacology | 2009

Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation.

In Tag Yu; Jin-Yong Park; Sung Hyun Kim; Jeong-Sik Lee; Yong-Seok Kim; Hyeon Son

Valproate (VPA) influences the proliferation and differentiation of neuronal cells. However, little is known about the downstream events, such as alterations in gene transcription, that are associated with cell fate choice. To determine whether VPA plays an instructive role in cell fate choice during hippocampal neurogenesis, the expression of genes involved in the cell cycle and neuronal differentiation was investigated. Treatment with VPA during the progenitor stages resulted in strong inhibition of cell proliferation and induction of neuronal differentiation, accompanied by increases in the expression of proneural transcription factors and in neuronal cell numbers. The increased expression of Ngn1, Math1 and p15 points to a shift towards neuronal fate in response to histone deacetylase inhibitors (HDACi). Chromatin immunoprecipitation (ChIP) analysis showed that acetylated histone H4 (Ac-H4) was associated with the Ngn1, Math1 and p15 promoters in cultured hippocampal neural progenitor cells. VPA-induced hippocampal neurogenesis was also accompanied by association of Ac-H4 with the Ngn1 promoter in hippocampal extracts. The discovery of an association between HDACi and the Ngn1, Math1 and p15 promoters extends the importance of HDAC inhibition as a key regulator of neuronal differentiation at the transcriptional level.


Molecular Brain | 2009

Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

Hyoung-Gon Ko; Deok-Jin Jang; Junehee Son; Chuljung Kwak; Jun-Hyeok Choi; Young-Hoon Ji; Yun-Sil Lee; Hyeon Son; Bong-Kiun Kaang

Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory.


Journal of Neurochemistry | 2001

Protein kinase C-mediated functional regulation of dopamine transporter is not achieved by direct phosphorylation of the dopamine transporter protein

Mi-Yoon Chang; Sang-Hun Lee; Jin-Hyuk Kim; Ki-Hwan Lee; Young-Sik Kim; Hyeon Son; Yong-Sung Lee

Dopaminergic neurotransmission is terminated by the action of the presynaptic dopamine transporter (DAT). It mediates Na+/Cl− ‐dependent re‐uptake of extracellular dopamine (DA) into the cell, and is regarded as a major regulatory mechanism for synaptic transmission. Previous works have documented that protein kinase C (PKC) activator or inhibitor alters DA uptake by DAT, suggesting that PKC phosphorylation plays an important regulatory mechanism in DAT function. Based on the existence of consensus amino acid sequences for PKC phosphorylation, it has been postulated that PKC regulation of DAT is mediated by the direct phosphorylation of DAT protein. In this study, we try to discover whether the functional regulation of DAT by PKC is due to direct phosphorylation of DAT. The PKC null mutant hDAT, where all putative PKC phosphorylation sites are eliminated, has been constructed by the replacement of serine/threonine residues with glycines. The mutation itself showed no effect on the functional activities of DAT. The DA uptake activity of PKC null mutant was equivalent to those of wild‐type hDAT (80–110% of wild‐type). Phorbol ester activation of PKC inhibited DA uptake of wild‐type hDAT by 35%, and staurosphorine blocked the effect of phorbol ester on DA uptake. The same phenomena was observed in PKC null mutant DAT, although no significant phosphorylation was observed by PKC activation. Confocal microscopic analysis using EGFP‐fused DAT revealed that the activation of PKC by phorbol ester elicited fluorescent DAT to be internalized into the intracellular space both in wild‐type and PKC null mutant DAT in a similar way. These results suggest that PKC‐mediated regulation of DAT function is achieved in an indirect manner, such as phosphorylation of a mediator protein or activation of a clathrin‐mediated pathway.

Collaboration


Dive into the Hyeon Son's collaboration.

Top Co-Authors

Avatar

Sang-Hun Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge