Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyesun Cho is active.

Publication


Featured researches published by Hyesun Cho.


Scientific Reports | 2016

Green fluorescent protein as a scaffold for high efficiency production of functional bacteriotoxic proteins in Escherichia coli

Nagasundarapandian Soundrarajan; Hyesun Cho; Byeongyong Ahn; Min-Kyung Choi; Le Minh Thong; Hojun Choi; Se-Yeoun Cha; Jin-Hoi Kim; Choi-Kyu Park; Kun-Ho Seo; Chankyu Park

The availability of simple, robust, and cost-effective methods for the large-scale production of bacteriotoxic peptides such as antimicrobial peptides (AMPs) is essential for basic and pharmaceutical research. However, the production of bacteriotoxic proteins has been difficult due to a high degree of toxicity in bacteria and proteolytic degradation. In this study, we inserted AMPs into the Green fluorescent protein (GFP) in a loop region and expressed them as insoluble proteins in high yield, circumventing the inherent toxicity of AMP production in Escherichia coli. The AMPs inserted were released by cyanogen bromide and purified by chromatography. We showed that highly potent AMPs such as Protegrin-1, PMAP-36, Buforin-2, and Bactridin-1 are produced in high yields and produced AMPs showed similar activities compared to chemically synthesized AMPs. We increased the yield more than two-fold by inserting three copies of Protegrin-1 in the GFP scaffold. The immunogold electron micrographs showed that the expressed Protegrin-1 in the GFP scaffold forms large and small size aggregates in the core region of the inclusion body and become entirely nonfunctional, therefore not influencing the proliferation of E. coli. Our novel method will be applicable for diverse bacteriotoxic peptides which can be exploited in biomedical and pharmaceutical researches.


Gene | 2015

Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes.

M. T. Le; Hojun Choi; Min-Kyeung Choi; Hyesun Cho; Jin-Hoi Kim; Han Geuk Seo; Se-Yeon Cha; Kun-Ho Seo; Hailu Dadi; Chankyu Park

The characterization of the genetic variations of major histocompatibility complex (MHC) is essential to understand the relationship between the genetic diversity of MHC molecules and disease resistance and susceptibility in adaptive immunity. We previously reported the development of high-resolution individual locus typing methods for three of the most polymorphic swine leukocyte antigens (SLA) class II loci, namely, SLA-DQA, SLA-DQB1, and SLA-DRB1. In this study, we extensively modified our previous protocols and developed a method for the simultaneous amplification of the three SLA class II genes and subsequent analysis of individual loci using direct sequencing. The unbiased and simultaneous amplification of alleles from the all three hyper-polymorphic and pseudogene containing genes such as MHC genes is extremely challenging. However, using this method, we demonstrated the successful typing of SLA-DQA, SLA-DQB1, and SLA-DRB1 for 31 selected individuals comprising 26 different SLA class II haplotypes which were identified from 700 animals using the single locus typing methods. The results were identical to the known genotypes from the individual locus typing. The new method has significant benefits over the individual locus typing, including lower typing cost, use of less biomaterial, less effort and fewer errors in handling large samples for multiple loci. We also extensively characterized the haplotypes of SLA class II genes and reported three new haplotypes. Our results should serve as a basis to investigate the possible association between polymorphisms of MHC class II and differences in immune responses to exogenous antigens.


FEBS Journal | 2014

Defining the genetic relationship of protegrin‐related sequences and the in vivo expression of protegrins

Min-Kyeung Choi; Min Thong Le; Hyesun Cho; Nagasundarapandian Soundrarajan; Hyoim Jeon; Choi Kyu Park; Se Yeoun Cha; Jin-Hoi Kim; Kun-Ho Seo; Chankyu Park

Protegrins (PGs) are potent antimicrobial peptides that act on a broad spectrum of microorganisms, including bacteria, fungi and some enveloped viruses. We analyzed the expression pattern of protegrins in 17 different pig tissues using RT–PCR, and developed an anti‐(PG–1) polyclonal IgG. Western blot analysis using the antibody showed that protegrins are mainly present as prepropeptide forms in normal tissues, rather than as mature peptides. Immunohistochemical analysis showed that protegrin expression was specific to a few cell types, including neutrophils, pulmonary club, epithelial and Leydig cells. Genetic analyses of the five previously reported protegrin sequences showed that they are encoded at a single locus, rather than from multiple paralogous genes. By genotyping 28 animals across five breeds, we identified eight different alleles of the PGs.


Antimicrobial Agents and Chemotherapy | 2017

Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity

Dayeong Kim; Nagasundarapandian Soundrarajan; Juyeon Lee; Hyesun Cho; Min-Kyeung Choi; Se-Yeoun Cha; Byeongyong Ahn; Hyoim Jeon; Minh Thong Le; Hyuk Song; Jin-Hoi Kim; Chankyu Park

ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens.


Genomics | 2016

Analysis of the vomeronasal receptor repertoire, expression and allelic diversity in swine

Hunduma Dinka; Minh Thong Le; Heekyun Ha; Hyesun Cho; Min-Kyeung Choi; Hojun Choi; Jin-Hoi Kim; Nagasundarapandian Soundarajan; Jin-Ki Park; Chankyu Park

Here we report a comprehensive analysis of the vomeronasal receptor repertoire in pigs. We identified a total of 25 V1R sequences consisting of 10 functional genes, 3 pseudogenes, and 12 partial genes, while functional V2R and FPR genes were not present in the pig genome. Pig V1Rs were classified into three subfamilies, D, F, and J. Using direct high resolution sequencing-based typing of all functional V1Rs from 10 individuals of 5 different breeds, a total of 24 SNPs were identified, indicating that the allelic diversity of V1Rs is much lower than that of the olfactory receptors. A high expression level of V1Rs was detected in the vomeronasal organ (VNO) and testes, while a low expression level of V1Rs was observed in all other tissues examined. Our results showed that pigs could serve as an interesting large animal model system to study pheromone-related neurobiology because of their genetic simplicity.


PLOS ONE | 2017

β2-microglobulin gene duplication in cetartiodactyla remains intact only in pigs and possibly confers selective advantage to the species

Thong Minh Le; Quy Van Chanh Le; Dung Minh Truong; Hye-Jeong Lee; Min-Kyeung Choi; Hyesun Cho; Jin-Hoi Kim; Jeong-Tae Do; Hyuk Song; Chankyu Park; Marc Robinson-Rechavi

Several β2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large number of MHC class I heavy chain genes in pigs. Further studies are necessary to address the biological meaning of increased expression of B2M.


Veterinary Research | 2018

Analysis of peptide-SLA binding by establishing immortalized porcine alveolar macrophage cells with different SLA class II haplotypes

Quy Van Chanh Le; Thong Minh Le; Hyesun Cho; Won-Il Kim; Kwonho Hong; Hyuk Song; Jin-Hoi Kim; Chankyu Park

Primary porcine alveolar macrophages (PAM) are useful for studying viral infections and immune response in pigs; however, long-term use of these cells is limited by the cells’ short lifespan. We immortalized primary PAMs by transfecting them with both hTERT and SV40LT and established two immortalized cell lines (iPAMs) actively proliferating even after 35 passages. These cells possessed the characteristics of primary PAMs, including strong expression of swine leukocyte antigen (SLA) class II genes and the inability to grow anchorage-independently. We characterized their SLA genes and subsequently performed peptide-SLA binding assays using a peptide from porcine circovirus type 2 open reading frame 2 to experimentally measure the binding affinity of the peptide to SLA class II. The number of peptides bound to cells measured by fluorescence was very low for PK15 cells (7.0% ± 1.5), which are not antigen-presenting cells, unlike iPAM61 (33.7% ± 3.4; SLA-DQA*0201/0303, DQB1*0201/0901, DRB1*0201/1301) and iPAM303 (73.3% ± 5.4; SLA DQA*0106/0201, DQB1*0202/0701, DRB1*0402/0602). The difference in peptide binding between the two iPAMs was likely due to the allelic differences between the SLA class II molecules that were expressed. The development of an immortal PAM cell panel harboring diverse SLA haplotypes and the use of an established method in this study can become a valuable tool for evaluating the interaction between antigenic peptides and SLA molecules and is important for many applications in veterinary medicine including vaccine development.


Gene | 2018

The novel cathelicidin of naked mole rats, Hg-CATH, showed potent antimicrobial activity and low cytotoxicity

Hyesun Cho; Nagasundarapandian Soundrarajan; Quy Le Van Chanh; Hyoim Jeon; Se-Yeoun Cha; Mingue Kang; Byeongyong Ahn; Kwonho Hong; Hyuk Song; Jin-Hoi Kim; Kyung-Soo Oh; Chankyu Park

We performed the in silico genome-wide identification of antimicrobial peptides against the available genome sequence of the naked mole rat Heterocephalus glaber (H. glaber). Our results showed the presence of Hg-CATH, the single cathelicidin containing the antimicrobial domain in H. glaber. We chemically synthesized a 25 amino-acid peptide (ΔHg-CATH) corresponding to the predicted antimicrobial-active core region of Hg-CATH, and evaluated its antibacterial activity against seven bacterial strains. The ΔHg-CATH peptide exhibited strong bactericidal activity against gram-negative bacteria, including a multi-drug resistant strain, while showing low toxicity towards mammalian cells, including erythrocytes. Scanning electron microscopy images of bacterial cells treated with ΔHg-CATH showed disruption of their membranes due to the formation of toroidal pores. Identifying novel antimicrobial peptides, such as Hg-CATH, may be important for identifying candidate peptides for the control of multi-drug resistant bacteria.


Gene | 2018

Determination of complete sequence information of the human ABO blood group orthologous gene in pigs and breed difference in blood type frequencies

Min-Kyeung Choi; Minh Thong Le; Hyesun Cho; Joori Yum; Mingue Kang; Hyuk Song; Jin-Hoi Kim; Hak Jae Chung; Kwonho Hong; Chankyu Park

The sequence information of the genomic form of the human ABO blood group orthologous gene (erythrocyte antigen A, EAA) is not complete in pigs. Therefore, we cloned and characterized the nucleotide sequence of EAA intron 7, which is critical to understand genetic difference between A and 0 blood groups in pigs, covering complete genomic sequence information of EAA excluding a ~560bp unsequencible gap. We also analyzed genetic polymorphisms within EAA intron 7 and exon 8. We found difference in A0 blood group frequencies among pig breeds. In addition, we designed a new genomic DNA-based A0 blood group typing method and improved the accuracy and simplicity of the typing.


PLOS ONE | 2015

Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method

Hailu Dadi; M. T. Le; Hunduma Dinka; DinhTruong Nguyen; Hojun Choi; Hyesun Cho; Min-Kyeung Choi; Jin-Hoi Kim; Jin-Ki Park; Nagasundarapandian Soundrarajan; Chankyu Park

The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.

Collaboration


Dive into the Hyesun Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge