Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyo Geun Kim is active.

Publication


Featured researches published by Hyo Geun Kim.


Neurotoxicity Research | 2009

Neuroprotective Effect of Ghrelin in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson’s Disease by Blocking Microglial Activation

Minho Moon; Hyo Geun Kim; Lakkyong Hwang; Ji-Hyung Seo; Sehee Kim; Soonyong Kim; Dahm Lee; Hyun-Ju Chung; Myung Sook Oh; Kyung-Tae Lee; Seungjoon Park

Ghrelin is an endogenous ligand for growth hormone (GH) secretagogue receptor 1a (GHS-R1a) and is produced and released mainly from the stomach. It was recently demonstrated that ghrelin can function as a neuroprotective factor by inhibiting apoptotic pathways. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic neurotoxicity in rodents; previous studies suggest that activated microglia actively participate in the pathogenesis of Parkinson’s disease (PD) neurodegeneration. However, the role of microglia in the neuroprotective properties of ghrelin is still unknown. Here we show that, in the mouse MPTP PD model generated by an acute regimen of MPTP administration, systemic administration of ghrelin significantly attenuates the loss of substantia nigra pars compacta (SNpc) neurons and the striatal dopaminergic fibers through the activation of GHS-R1a. We also found that ghrelin reduced nitrotyrosine levels and improved the impairment of rota-rod performance. Ghrelin prevents MPTP-induced microglial activation in the SNpc and striatum, the expression of pro-inflammatory molecules tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β), and the activation of inducible nitric oxide synthase. The inhibitory effect of ghrelin on the activation of microglia appears to be indirect by suppressing matrix metalloproteinase-3 (MMP-3) expression in stressed dopaminergic neurons because GHS-R1a is not expressed in SNpc microglial cells. Finally, in vitro administration of ghrelin prevented 1-methyl-4-phenylpyridinium-induced dopaminergic cell loss, MMP-3 expression, microglial activation, and the subsequent release of TNF-α, IL-1β, and nitrite in mesencephalic cultures. Our data indicate that ghrelin may act as a survival factor for dopaminergic neurons by functioning as a microglia-deactivating factor and suggest that ghrelin may be a valuable therapeutic agent for neurodegenerative diseases such as PD.


British Journal of Nutrition | 2010

Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson's disease models

Hyo Geun Kim; Mi Sun Ju; Jin Sup Shim; Min Cheol Kim; Sang-Hun Lee; Youngbuhm Huh; Sun Yeou Kim; Myung Sook Oh

Parkinsons disease (PD), one of the most common neurodegenerative disorders, is characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) to the striatum (ST), and involves oxidative stress. Mulberry fruit from Morus alba L. (Moraceae) is commonly eaten, and has long been used in traditional oriental medicine. It contains well-known antioxidant agents such as anthocyanins. The present study examined the protective effects of 70 % ethanol extract of mulberry fruit (ME) against neurotoxicity in in vitro and in vivo PD models. In SH-SY5Y cells stressed with 6-hydroxydopamine (6-OHDA), ME significantly protected the cells from neurotoxicity in a dose-dependent manner. Other assays demonstrated that the protective effect of ME was mediated by its antioxidant and anti-apoptotic effects, regulating reactive oxygen species and NO generation, Bcl-2 and Bax proteins, mitochondrial membrane depolarisation and caspase-3 activation. In mesencephalic primary cells stressed with 6-OHDA or 1-methyl-4-phenylpyridinium (MPP+), pre-treatment with ME also protected dopamine neurons, showing a wide range of effective concentrations in MPP+-induced toxicity. In the sub-acute mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), ME showed a preventative effect against PD-like symptoms (bradykinesia) in the behavioural test and prevented MPTP-induced dopaminergic neuronal damage in an immunocytochemical analysis of the SNpc and ST. These results indicate that ME has neuroprotective effects in in vitro and in vivo PD models, and that it may be useful in preventing or treating PD.


Food and Chemical Toxicology | 2010

Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models

Mi Sun Ju; Hyo Geun Kim; Jin Gyu Choi; Jong Hoon Ryu; Jinyoung Hur; Youn Jung Kim; Myung Sook Oh

Cassiae semen, a commonly consumed tea and medicinal food, has been shown to have multiple therapeutic actions related to the prevention of dementia and ischemia. In this study, we investigated the effects of extract of Cassiae semen (COE) against neurotoxicities in in vitro and in vivo Parkinsons disease (PD) models. In PC12 cells, COE attenuated the cell damage induced by 100 microM 6-hydroxydopamine (6-OHDA) stress in MTT assay, and it inhibited the overproduction of reactive oxygen species, glutathione depletion, mitochondrial membrane depolarization and caspase-3 activation at 0.1-10 microg/ml. In addition, COE showed radical scavenging activity in the DPPH and ABTS assays. In mesencephalic dopaminergic (DA) culture, COE protected DA cells against 10 microM 6-OHDA- and 10 microM 1-methyl-4-phenylpyridine-induced toxicities at 0.1-1 microg/ml. We also evaluated the effect of COE in a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the pole test, COE (50mg/kg, 15 days)+MPTP (30 mg/kg, 5 days)-treated group had decreased T-turn and T-LA which were longer in MPTP group. Moreover, COE significantly protected DA neuronal degeneration induced by MPTP in the substantia nigra and striatum of these mice. These results demonstrate that COE can prevent DA neurons against the toxicities involved in PD.


Current Pharmaceutical Design | 2012

Herbal Medicines for the Prevention and Treatment of Alzheimer's Disease

Hyo Geun Kim; Myung Sook Oh

Alzheimers disease (AD) is a chronic neurodegenerative disorder and is the most common cause of progressive dementia in aging. Research on AD therapy has been partly successful in terms of developing symptomatic treatments, but there have been a number of failures with regard to developing disease-modifying therapies. The pathogenesis of AD remains unclear and the present one-drug, one-target paradigm for anti-AD treatment appears to be clinically unsuccessful. In many countries, traditional herbal medicines are used to prevent or treat neurodegenerative disorders, and some have been developed as nutraceuticals or functional foods. This review briefly introduces progress in the development of anti-AD treatments and then focuses on recent advances in the research, characteristics, and development of herbal medicines. Because AD arises via multiple pathological or neurotoxic pathways, herbal medicines have the potential to be developed into optimum pharmaceuticals and nutraceuticals for AD because of their multi-function, multi-target characteristics.


Journal of Medicinal Food | 2010

Protective Effect of Cyperi Rhizoma Against 6-Hydroxydopamine-Induced Neuronal Damage

Chang-Hoon Lee; Deok-Sang Hwang; Hyo Geun Kim; Hyein Oh; Hanbyeol Park; Jung-Hoon Cho; Jin-Moo Lee; Jun-Bock Jang; Kyung-Sub Lee; Myung Sook Oh

Cyperi rhizoma, the rhizome of Cyperus rotundus L. (Family Cyperaceae), is a well-known functional food and traditional herbal medicine in Korea. It has been reported that Cyperi rhizoma has antioxidant and free radical scavenging activities that play a major role in protection of neurodegenerative disorders, such as Parkinsons disease (PD). In the present study, the neuroprotective effects of a water extract of Cyperi rhizoma (CRE) against 6-hydroxydopamine (6-OHDA)-induced neuronal damage were evaluated in an experimental model of PD. In PC12 cells, CRE showed a significant protective effect on cell viability at 50 and 100 microg/mL. CRE inhibited generation of reactive oxygen species and nitric oxide, reduction of mitochondrial membrane potential, and caspase-3 activity, which were induced by 6-OHDA. CRE also showed a significant protective effect against damage to dopaminergic neurons in primary mesencephalic culture. These results suggest that CRE has neuroprotective effects against 6-OHDA-induced toxicity through antioxidant and anti-apoptotic activities in an in vitro PD model.


Journal of Ethnopharmacology | 2009

Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease

Jin Sup Shim; Hyo Geun Kim; Mi Sun Ju; Jin Gyu Choi; Seo Young Jeong; Myung Sook Oh

ETHNOPHARMACOLOGICAL RELEVANCE While the hook of Uncaria rhynchophylla (URH) is a traditional herb used in northeast Asia for the treatment of Parkinsons disease (PD)-like symptoms such as tremor, it has not been experimentally evaluated in a PD model. AIM OF THE STUDY We investigated the effects of URH on 6-hydroxydapamine (6-OHDA)-induced neurotoxicity in in vitro and in vivo models of PD. MATERIALS AND METHODS The cell viability, anti-oxidative activity, and anti-apoptotic activity of a water extract of URH (URE) were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, reactive oxygen species (ROS), total glutathione (GSH), and caspase-3 assays in PC12 cells stressed by 6-OHDA. We also investigated the behavioral recovery and dopaminergic neuron protection of URE using an apomorphine-induced rotation test and tyrosine hydroxylase immunohistochemistry in the hemi-parkinsonian rat model of the unilateral 6-OHDA lesion of the medial forebrain bundle. RESULTS In PC12 cells, URE significantly reduced cell death and the generation of ROS, increased GSH levels, and inhibited caspase-3 activity induced by 6-OHDA. In 6-OHDA-lesioned rats, posttreatment with URE (5 mg/kg/day for 14 days) significantly reduced apomorphine-induced rotation, and it lowered dopaminergic neuronal loss in substantia nigra pars compacta. CONCLUSIONS URE possesses neuroprotective activity against 6-OHDA-induced toxicity through anti-oxidative and anti-apoptotic activities in PD models.


Biochimica et Biophysica Acta | 2012

Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells.

Ying Piao; Hyo Geun Kim; Myung Sook Oh; Youngmi Kim Pak

BACKGROUND Mitochondrial dysfunction is a prominent feature of neurodegenerative diseases including Parkinsons disease (PD), in which insulin signaling pathway may also be implicated because 50-80% of PD patients exhibited metabolic syndrome and insulin resistance. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite, 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP(+)), inhibit complex I in mitochondrial respiratory chain and are used widely to construct the PD models. But the precise molecular link between mitochondrial damage and insulin signaling remains unclear. METHODS AND RESULTS Using cell-based mitochondrial activity profiling system, we systemically demonstrated that MPP(+) suppressed mitochondrial activity and mitochondrial gene expressions mediated by nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) in SH-SY5Y cells. MPP(+) fragmented mitochondrial networks and repressed phosphorylation of AKT. Similarly, the expressions of mitochondrial genes and tyrosine hydroxylase and AKT phosphorylation were reduced in substantia nigra and striatum of MPTP-injected mice. Transient transfection of TFAM, NRF-1, or myr-AKT reversed all aspects of the MPP(+)-mediated changes. CONCLUSIONS Mitochondrial activation by TFAM, NRF-1, and myr-AKT abrogated MPP(+)-mediated damages on mitochondria and insulin signaling, leading to recovery of nigrostriatal neurodegeneration. GENERAL SIGNIFICANCE We suggest that TFAM, NRF-1, and AKT may be the critical points of therapeutic intervention for PD. This article is part of a Special Issue entitled Biochemistry of Mitochondria.


Neurotoxicology | 2014

Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

Hyo Geun Kim; Minho Moon; Jin Gyu Choi; Gunhyuk Park; Ae-Jung Kim; Jinyoung Hur; Kyung-Tae Lee; Myung Sook Oh

Recent studies on Alzheimers disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation induced by AβO through blocking MAPK and NF-κB signaling and, in part, contributing to the amelioration of neurodegeneration and memory impairment.


Biochemical and Biophysical Research Communications | 2014

6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia.

Minho Moon; Hyo Geun Kim; Jin Gyu Choi; Hyein Oh; Paula Kj Lee; Sang Keun Ha; Sun Yeou Kim; Yongkon Park; Youngbuhm Huh; Myung Sook Oh

Recently, increased attention has been directed towards medicinal extracts as potential new drug candidates for dementia. Ginger has long been used as an important ingredient in cooking and traditional herbal medicine. In particular, ginger has been known to have disease-modifying effects in Alzheimers disease (AD). However, there is no evidence of which constituents of ginger exhibit therapeutic effects against AD. A growing number of experimental studies suggest that 6-shogaol, a bioactive component of ginger, may play an important role as a memory-enhancing and anti-oxidant agent against neurological diseases. 6-Shogaol has also recently been shown to have anti-neuroinflammatory effects in lipopolysaccharide (LPS)-treated astrocytes and animal models of Parkinsons disease, LPS-induced inflammation and transient global ischemia. However, it is still unknown whether 6-shogaol has anti-inflammatory effects against oligomeric forms of the Aβ (AβO) in animal brains. Furthermore, the effects of 6-shogaol against memory impairment in dementia models are also yet to be investigated. In this study, we found that administration of 6-shogaol significantly reduced microgliosis and astrogliosis in intrahippocampal AβO-injected mice, ameliorated AβO and scopolamine-induced memory impairment, and elevated NGF levels and pre- and post-synaptic marker in the hippocampus. All these results suggest that 6-shogaol may play a role in inhibiting glial cell activation and reducing memory impairment in animal models of dementia.


Basic & Clinical Pharmacology & Toxicology | 2010

Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson's disease.

Hyo Geun Kim; Mi Sun Ju; Dong-Hyun Kim; Jongki Hong; Seung-Hun Cho; Ki-Ho Cho; Wan-Su Park; Eunjoo H. Lee; Sun Yeou Kim; Myung Sook Oh

Previous reports have suggested that the herbal medicine Chunghyuldan (CHD, Qingxue-dan in Chinese and Daio-Orengedokuto in Japanese) has wide-ranging biological effects, including anti-hyperlipidaemic, anti-ischaemic, anti-inflammatory and antioxidant activities. Reactive oxygen species (ROS)-mediated mitochondrial dysfunction is thought to be one of the major pathological mechanisms responsible for Parkinsons disease (PD) and may underlie the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that is a hallmark of this disease. In this study, we examined the neuroprotective effects of CHD in PD models produced by treatment with neurotoxins that act via ROS-mediated mitochondrial dysfunction. In an in vitro PD model using 6-hydroxydopamine, CHD applied at concentrations of 10 and 100 μg/ml exhibited significant protective effects in PC12 cells by inhibiting intracellular ROS generation. CHD applied at 10 and 100 μg/ml also prevented 6-hydroxydopamine-induced mitochondrial depolarization and elevation of caspase-3 activity. At the same doses, CHD showed regulatory effects on the haem oxygenase-1 and gp91 phagocytic oxidase which have critical roles in generating ROS. In addition, CHD protected dopaminergic neurons in a primary mesencephalic culture against MPP+ neurotoxicity. In an in vivo PD model produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment (20 mg/kg, 4 times, i.p.), co-administration of CHD (50 mg/kg, 5 days, p.o.) ameliorated PD-like behavioural symptoms (bradykinesia) and reduced dopaminergic neuronal damage in the SNpc and striatum as measured by immunocytochemistry. These results demonstrate the neuroprotective effects of CHD in PD models that are mediated through inhibition of ROS generation and associated mitochondrial dysfunction.

Collaboration


Dive into the Hyo Geun Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyein Oh

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge