Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyo Sun Jin is active.

Publication


Featured researches published by Hyo Sun Jin.


Cell Host & Microbe | 2009

Vitamin D3 Induces Autophagy in Human Monocytes/Macrophages via Cathelicidin

Jae-Min Yuk; Dong-Min Shin; Hyemi Lee; Chul-Su Yang; Hyo Sun Jin; Kwang-Kyu Kim; Zee-Won Lee; Sang-Hee Lee; Jin-Man Kim; Eun-Kyeong Jo

Autophagy and vitamin D3-mediated innate immunity have been shown to confer protection against infection with intracellular Mycobacterium tuberculosis. Here, we show that these two antimycobacterial defenses are physiologically linked via a regulatory function of human cathelicidin (hCAP-18/LL-37), a member of the cathelicidin family of antimicrobial proteins. We show that 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, induced autophagy in human monocytes via cathelicidin, which activated transcription of the autophagy-related genes Beclin-1 and Atg5. 1,25D3 also induced the colocalization of mycobacterial phagosomes with autophagosomes in human macrophages in a cathelicidin-dependent manner. Furthermore, the antimycobacterial activity in human macrophages mediated by physiological levels of 1,25D3 required autophagy and cathelicidin. These results indicate that human cathelicidin, a protein that has direct antimicrobial activity, also serves as a mediator of vitamin D3-induced autophagy.


PLOS Pathogens | 2010

Mycobacterium tuberculosis Eis Regulates Autophagy, Inflammation, and Cell Death through Redox-dependent Signaling

Dong Min Shin; Bo Young Jeon; Hye Mi Lee; Hyo Sun Jin; Jae Min Yuk; Chang Hwa Song; Sang-Hee Lee; Zee Won Lee; Sang-Nae Cho; Jin Man Kim; Richard L. Friedman; Eun Kyeong Jo

The “enhanced intracellular survival” (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis) displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.


Nature Immunology | 2011

The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors

Jae-Min Yuk; Dong-Min Shin; Hyemi Lee; Jwa-Jin Kim; Sun-Woong Kim; Hyo Sun Jin; Chul-Su Yang; Kyeong Ah Park; Dipanjan Chanda; Don-Kyu Kim; Song Mei Huang; Sang Ki Lee; Chul-Ho Lee; Jin-Man Kim; Chang-Hwa Song; Soo Young Lee; Gang Min Hur; David D. Moore; Hueng-Sik Choi; Eun-Kyeong Jo

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase–dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.


Journal of Immunology | 2015

MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection

Jin Kyung Kim; Jae-Min Yuk; Soo Yeon Kim; Tae Sung Kim; Hyo Sun Jin; Chul-Su Yang; Eun-Kyeong Jo

MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis–induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis–infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG.


Autophagy | 2014

The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy

Chul-Su Yang; Jwa-Jin Kim; Hyemi Lee; Hyo Sun Jin; Sang-Hee Lee; Ji-Hoon Park; Soung Jung Kim; Jin-Man Kim; Yong-Mahn Han; Myung-Shik Lee; Gi Ryang Kweon; Minho Shong; Eun-Kyeong Jo

AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.


Nature Communications | 2015

Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome

Chul-Su Yang; Jwa-Jin Kim; Tae Sung Kim; Phil Young Lee; Soo Yeon Kim; Hyemi Lee; Dong-Min Shin; Loi T. Nguyen; Moo-Seung Lee; Hyo Sun Jin; Kwang-Kyu Kim; Chul-Ho Lee; Myung Hee Kim; Sung Goo Park; Jin-Man Kim; Hueng-Sik Choi; Eun-Kyeong Jo

Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the regulators of this process remain poorly defined. Herein, we show that the orphan nuclear receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3, proteins that are both recruited to mitochondria. Overexpression of SHP competitively inhibits binding of NLRP3 to apoptosis-associated speck-like protein containing a CARD (ASC). SHP deficiency results in increased secretion of proinflammatory cytokines IL-1β and IL-18, and excessive pathologic responses typically observed in mouse models of kidney tubular necrosis and peritoneal gout. Notably, the loss of SHP results in accumulation of damaged mitochondria and a sustained interaction between NLRP3 and ASC in the endoplasmic reticulum. These data are suggestive of a role for SHP in controlling NLRP3 inflammasome activation through a mechanism involving interaction with NLRP3 and maintenance of mitochondrial homeostasis.


Immunity | 2015

Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation

Jae-Min Yuk; Tae Sung Kim; Soo Yeon Kim; Hyemi Lee; Jeongsu Han; Catherine R. Dufour; Jin Kyung Kim; Hyo Sun Jin; Chul-Su Yang; Ki-Sun Park; Chul-Ho Lee; Jin-Man Kim; Gi Ryang Kweon; Hueng-Sik Choi; Jean-Marc Vanacker; David D. Moore; Vincent Giguère; Eun-Kyeong Jo

The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.


Immune Network | 2017

Mitochondrial Control of Innate Immunity and Inflammation

Hyo Sun Jin; Hyun-Woo Suh; Seong-Jun Kim; Eun-Kyeong Jo

Mitochondria are key organelles involved in energy production, functioning as the metabolic hubs of cells. Recent findings emphasize the emerging role of the mitochondrion as a key intracellular signaling platform regulating innate immune and inflammatory responses. Several mitochondrial proteins and mitochondrial reactive oxygen species have emerged as central players orchestrating the innate immune responses to pathogens and damaging ligands. This review explores our current understanding of the roles played by mitochondria in regulation of innate immunity and inflammatory responses. Recent advances in our understanding of the relationship between autophagy, mitochondria, and inflammasome activation are also briefly discussed. A comprehensive understanding of mitochondrial role in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation, will facilitate development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders.


Immunology and Cell Biology | 2017

Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling

Jin Kyung Kim; Hyo Sun Jin; Hyun-Woo Suh; Eun-Kyeong Jo

Inflammasomes are cytosolic multiprotein complexes that cause the release of biologically active interleukin‐1β. The best‐characterized inflammasome is the NLRP3 (nucleotide‐binding domain, leucine‐rich‐containing family, pyrin domain‐containing‐3 or Nod‐like receptor protein 3) inflammasome. The NLRP3 inflammasome forms an assembly consisting of the ASC (apoptosis‐associated speck‐like protein containing a C‐terminal caspase recruitment domain) adaptor protein and the effector, caspase‐1 (cysteine‐dependent aspartate‐directed protease‐1). Numerous agents and ligands derived from pathogens, modified self‐cells and the environment induce NLRP3 inflammasome complex formation. NLRP3 inflammasome activation is tightly controlled at the transcriptional and post‐translational levels to prevent unwanted excessive inflammation. Recent studies have highlighted the roles and mechanisms of several negative regulators that inhibit the assembly of NLRP3 inflammasome complexes and suppress inflammatory responses. The identification and characterization of new players in the regulation of NLRP3 inflammasome may lead to the development of inflammasome‐targeting therapeutics against various inflammatory diseases related to NLRP3 inflammasome‐associated pathogenesis.


Journal of Immunology | 2017

PPAR-α Activation Mediates Innate Host Defense through Induction of TFEB and Lipid Catabolism

Yi Sak Kim; Hyemi Lee; Jin Kyung Kim; Chul-Su Yang; Tae Sung Kim; Mingyu Jung; Hyo Sun Jin; Sup Kim; Jichan Jang; Goo Taeg Oh; Jin-Man Kim; Eun-Kyeong Jo

The role of peroxisome proliferator–activated receptor α (PPAR-α) in innate host defense is largely unknown. In this study, we show that PPAR-α is essential for antimycobacterial responses via activation of transcription factor EB (TFEB) transcription and inhibition of lipid body formation. PPAR-α deficiency resulted in an increased bacterial load and exaggerated inflammatory responses during mycobacterial infection. PPAR-α agonists promoted autophagy, lysosomal biogenesis, phagosomal maturation, and antimicrobial defense against Mycobacterium tuberculosis or M. bovis bacillus Calmette–Guérin. PPAR-α agonists regulated multiple genes involved in autophagy and lysosomal biogenesis, including Lamp2, Rab7, and Tfeb in bone marrow–derived macrophages. Silencing of TFEB reduced phagosomal maturation and antimicrobial responses, but increased macrophage inflammatory responses during mycobacterial infection. Moreover, PPAR-α activation promoted lipid catabolism and fatty acid β-oxidation in macrophages during mycobacterial infection. Taken together, our data indicate that PPAR-α mediates antimicrobial responses to mycobacterial infection by inducing TFEB and lipid catabolism.

Collaboration


Dive into the Hyo Sun Jin's collaboration.

Top Co-Authors

Avatar

Eun-Kyeong Jo

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyemi Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Min Yuk

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jin Kyung Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Tae Sung Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Hee Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Soo Yeon Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Dong-Min Shin

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Chul-Su Yang

College of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge