Hyuck Jin Lee
Ulsan National Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyuck Jin Lee.
Journal of the American Chemical Society | 2014
SangHyun Lee; Xueyun Zheng; Janarthanan Krishnamoorthy; Masha G. Savelieff; Hyun Min Park; Jeffrey R. Brender; Jin Hoon Kim; Jeffrey S. Derrick; Akiko Kochi; Hyuck Jin Lee; Cheal Kim; Ayyalusamy Ramamoorthy; Michael T. Bowers; Mi Hee Lim
Alzheimers disease (AD) is characterized by multiple, intertwined pathological features, including amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress. We report a novel compound (ML) prototype of a rationally designed molecule obtained by integrating structural elements for Aβ aggregation control, metal chelation, reactive oxygen species (ROS) regulation, and antioxidant activity within a single molecule. Chemical, biochemical, ion mobility mass spectrometric, and NMR studies indicate that the compound ML targets metal-free and metal-bound Aβ (metal-Aβ) species, suppresses Aβ aggregation in vitro, and diminishes toxicity induced by Aβ and metal-treated Aβ in living cells. Comparison of ML to its structural moieties (i.e., 4-(dimethylamino)phenol (DAP) and (8-aminoquinolin-2-yl)methanol (1)) for reactivity with Aβ and metal-Aβ suggests the synergy of incorporating structural components for both metal chelation and Aβ interaction. Moreover, ML is water-soluble and potentially brain permeable, as well as regulates the formation and presence of free radicals. Overall, we demonstrate that a rational structure-based design strategy can generate a small molecule that can target and modulate multiple factors, providing a new tool to uncover and address AD complexity.
Chemical Society Reviews | 2014
Hyuck Jin Lee; Kyle J. Korshavn; Akiko Kochi; Jeffrey S. Derrick; Mi Hee Lim
Cholesterol and metal ions have been suggested to be associated with the onset and progression of Alzheimers disease (AD). Moreover, recent findings have demonstrated a potential interconnection between these two factors. For example, (a) cholesterol has been shown to be misregulated in AD-afflicted brains, and the aberrant activity of proteins (particularly, apolipoprotein E (ApoE) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR)) has been linked to cholesterol-related AD exacerbation; (b) dyshomeostasis of metal ions associated with misfolded proteins (i.e., amyloid-β (Aβ) aggregates) found in the brains of AD patients is shown to promote oxidative stress leading to the malfunction of multiple proteins, including cytochrome c oxidase (CcO), and Cu/Zn superoxide dismutase (SOD1); (c) metal ion misregulation has also been observed to disrupt the activity of proteins (e.g., HMGR, low-density lipoproteins (LDL)), required for cholesterol production and regulation. Herein, we briefly discuss the potential involvement of cholesterol and metal ions in AD neuropathogenesis in both individual and interrelated manners.
Chemical Science | 2014
Alaina S. DeToma; Janarthanan Krishnamoorthy; Younwoo Nam; Hyuck Jin Lee; Jeffrey R. Brender; Akiko Kochi; Dong-Kuk Lee; Valentina Onnis; Cenzo Congiu; Stefano Manfredini; Silvia Vertuani; Gianfranco Balboni; Ayyalusamy Ramamoorthy; Mi Hee Lim
Metal ion homeostasis in conjunction with amyloid-β (Aβ) aggregation in the brain has been implicated in Alzheimers disease (AD) pathogenesis. To uncover the interplay between metal ions and Aβ peptides, synthetic, multifunctional small molecules have been employed to modulate Aβ aggregation in vitro. Naturally occurring flavonoids have emerged as a valuable class of compounds for this purpose due to their ability to control both metal-free and metal-induced Aβ aggregation. Although flavonoids have shown anti-amyloidogenic effects, the structural moieties of flavonoids responsible for such reactivity have not been fully identified. In order to understand the structure–interaction–reactivity relationship within the flavonoid family for metal-free and metal-associated Aβ, we designed, synthesized, and characterized a set of isoflavone derivatives, aminoisoflavones (1–4), that displayed reactivity (i.e., modulation of Aβ aggregation) in vitro. NMR studies revealed a potential binding site for aminoisoflavones between the N-terminal loop and central helix of prefibrillar Aβ, which is different from the non-specific binding observed for other flavonoids. The absence or presence of the catechol group, responsible for metal binding, differentiated the binding affinities of aminoisoflavones with Aβ and enthalpy/entropy balance for their Aβ interaction. Furthermore, having a catechol group influenced the binding mode with fibrillar Aβ. Inclusion of additional substituents moderately tuned the impact of aminoisoflavones on Aβ aggregation. Overall, through these studies, we obtained valuable insights into the requirements for parity among metal chelation, intermolecular interactions, and substituent variation for Aβ interaction.
Journal of the American Chemical Society | 2015
Jeffrey S. Derrick; Richard A. Kerr; Younwoo Nam; Shin Bi Oh; Hyuck Jin Lee; Kaylin G. Earnest; Nayoung Suh; Kristy L. Peck; Mehmet Ozbil; Kyle J. Korshavn; Ayyalusamy Ramamoorthy; Rajeev Prabhakar; Edward J. Merino; Jason Shearer; Joo Yong Lee; Brandon T. Ruotolo; Mi Hee Lim
Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimers disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.
The Royal Society of Chemistry | 2014
Alaina S. DeToma; Janarthanan Krishnamoorthy; Younwoo Nam; Hyuck Jin Lee; Jeffrey R. Brender; Akiko Kochi; Dong-Kuk Lee; Valentina Onnis; Cenzo Congiu; Stefano Manfredini; Silvia Vertuani; Gianfranco Balboni; Ayyalusamy Ramamoorthy; Mi Hee Lim
Metal ion homeostasis in conjunction with amyloid-β (Aβ) aggregation in the brain has been implicated in Alzheimers disease (AD) pathogenesis. To uncover the interplay between metal ions and Aβ peptides, synthetic, multifunctional small molecules have been employed to modulate Aβ aggregation in vitro. Naturally occurring flavonoids have emerged as a valuable class of compounds for this purpose due to their ability to modulate both metal-free and metal-induced Aβ aggregation. Although, flavonoids have shown anti-amyloidogenic effects, the structural moieties of flavonoids responsible for such reactivity have not been fully identified. In order to understand the structure-interaction-reactivity relationship within the flavonoid family for metal-free and metal-associated Aβ, we designed, synthesized, and characterized a set of isoflavone derivatives, aminoisoflavones (1-4), that displayed reactivity (i.e., modulation of Aβ aggregation) in vitro. NMR studies revealed a potential binding site for aminoisoflavones between the N-terminal loop and central helix on prefibrillar Aβ different from the non-specific binding observed for other flavonoids. The absence or presence of the catechol group differentiated the binding affinities and enthalpy/entropy balance between aminoisoflavones and Aβ. Furthermore, having a catechol group influenced the binding mode with fibrillar Aβ. Inclusion of additional substituents moderately tuned the impact of aminoisoflavones on Aβ aggregation. Overall, through these studies, we obtained valuable insights on the requirements for parity among metal chelation, intermolecular interactions, and substituent variation for Aβ interaction.
Chemistry: A European Journal | 2017
Juhye Kang; Shin Jung C. Lee; Jung Seung Nam; Hyuck Jin Lee; Myeong Gyun Kang; Kyle J. Korshavn; Hyun Tak Kim; Jaeheung Cho; Ayyalusamy Ramamoorthy; Hyun Woo Rhee; Tae-Hyuk Kwon; Mi Hee Lim
Aggregates of amyloidogenic peptides are involved in the pathogenesis of several degenerative disorders. Herein, an iridium(III) complex, Ir-1, is reported as a chemical tool for oxidizing amyloidogenic peptides upon photoactivation and subsequently modulating their aggregation pathways. Ir-1 was rationally designed based on multiple characteristics, including 1) photoproperties leading to excitation by low-energy radiation; 2) generation of reactive oxygen species responsible for peptide oxidation upon photoactivation under mild conditions; and 3) relatively easy incorporation of a ligand on the IrIII center for specific interactions with amyloidogenic peptides. Biochemical and biophysical investigations illuminate that the oxidation of representative amyloidogenic peptides (i.e., amyloid-β, α-synuclein, and human islet amyloid polypeptide) is promoted by light-activated Ir-1, which alters the conformations and aggregation pathways of the peptides. Additionally, their potential oxidation sites are identified as methionine, histidine, or tyrosine residues. Overall, our studies on Ir-1 demonstrate the feasibility of devising metal complexes as chemical tools suitable for elucidating the nature of amyloidogenic peptides at the molecular level, as well as controlling their aggregation.
Journal of the American Chemical Society | 2017
Tae Su Choi; Hyuck Jin Lee; Jong Yoon Han; Mi Hee Lim; Hugh I. Kim
Regulation of amyloid-β (Aβ) aggregation by metal ions and proteins is essential for understanding the pathology of Alzheimers disease (AD). Human serum albumin (HSA), a regulator of metal and protein transportation, can modulate metal-Aβ interactions and Aβ aggregation in human fluid; however, the molecular mechanisms for such activities remain unclear. Herein, we report the molecular-level complexation between Zn(II), Cu(II), Aβ, and HSA, which is able to alter the aggregation and cytotoxicity of Aβ peptides and induce their cellular transportation. In addition, a single Aβ monomer-bound HSA is observed with the structural change of Aβ from a random coil to an α-helix. Small-angle X-ray scattering (SAXS) studies indicate that Aβ-HSA complexation causes no structural variation of HSA in solution. Conversely, ion mobility mass spectrometry (IM-MS) results present that Aβ prevents the shrinkage of the V-shaped groove of HSA in the gas phase. Consequently, for the first time, HSA is demonstrated to predominantly capture a single Aβ monomer at the groove using the phase transfer of a protein heterodimer from solution to the gas phase. Moreover, HSA sequesters Zn(II) and Cu(II) from Aβ while maintaining Aβ-HSA interaction. Therefore, HSA is capable of controlling metal-free and metal-bound Aβ aggregation and aiding the cellular transportation of Aβ via Aβ-HSA complexation. The overall results and observations regarding HSA, Aβ, and metal ions advance our knowledge of how protein-protein interactions associated with Aβ and metal ions could be linked to AD pathogenesis.
Inorganic chemistry frontiers | 2016
Hyuck Jin Lee; Richard A. Kerr; Kyle J. Korshavn; Jeeyeon Lee; Juhye Kang; Ayyalusamy Ramamoorthy; Brandon T. Ruotolo; Mi Hee Lim
Amyloid-β (Aβ) and metal ions are suggested to be involved in the pathogenesis of Alzheimers disease (AD). Cu(II) and Zn(II) can interact with Aβ and facilitate peptide aggregation producing toxic oligomeric peptide species. Additionally, redox-active metal-bound Aβ is shown to generate reactive oxygen species (ROS). Although the interaction of metal ions with Aβ and the reactivity of metal-associated Aβ (metal–Aβ) are indicated, the relationship between metal–Aβ and AD etiology is still unclear. Some naturally occurring flavonoids capable of redirecting metal–Aβ peptides into nontoxic, off-pathway Aβ aggregates have been presented as valuable tools for elucidating the role of metal–Aβ in AD. The structural moieties of the flavonoids responsible for their reactivity toward metal–Aβ are not identified, however. To determine a structure–interaction–reactivity relationship between flavonoids and metal-free Aβ or metal–Aβ, four flavonoids (morin, quercetin, galangin, and luteolin) were rationally selected based on structural variations (i.e., number and position of hydroxyl groups). These four flavonoids could noticeably modulate metal–Aβ aggregation over metal-free analogue to different extents. Moreover, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies reveal that the direct interactions of the flavonoids with metal-free and/or metal-bound Aβ are distinct. Overall, our studies demonstrate that alternation of the hydroxyl groups on the B and C rings of flavonoids (structure) could differentiate their metal/metal-free Aβ/metal–Aβ interactions (interaction) and subsequently direct their effects on metal-free Aβ and metal–Aβ aggregation in vitro and Aβ–/metal–Aβ-triggered toxicity in living cells (reactivity), suggesting a structure–interaction–reactivity relationship.
ACS Chemical Neuroscience | 2017
Jiyeon Han; Hyuck Jin Lee; Kyu Yeon Kim; Shin Jung C. Lee; Jong-Min Suh; Jaeheung Cho; Junghyun Chae; Mi Hee Lim
Multiple pathogenic factors [e.g., amyloid-β (Aβ), metal ions, metal-bound Aβ (metal-Aβ), reactive oxygen species (ROS)] are found in the brain of patients with Alzheimers disease (AD). In order to elucidate the roles of pathological elements in AD, chemical tools able to regulate their activities would be valuable. Due to the complicated link among multiple pathological factors, however, it has been challenging to invent such chemical tools. Herein, we report novel small molecules as chemical tools toward modulation of single or multiple target(s), designed via a rational structure-property-directed strategy. The chemical properties (e.g., oxidation potentials) of our molecules and their coverage of reactivities toward the pathological targets were successfully differentiated through a minor structural variation [i.e., replacement of one nitrogen (N) or sulfur (S) donor atom in the framework]. Among our compounds (1-3), 1 with the lowest oxidation potential is able to noticeably modify the aggregation of both metal-free Aβ and metal-Aβ, as well as scavenge free radicals. Compound 2 with the moderate oxidation potential significantly alters the aggregation of Cu(II)-Aβ42. The hardly oxidizable compound, 3, relative to 1 and 2, indicates no noticeable interactions with all pathogenic factors, including metal-free Aβ, metal-Aβ, and free radicals. Overall, our studies demonstrate that the design of small molecules as chemical tools able to control distinct pathological components could be achieved via fine-tuning of structures and properties.
Chemical Society Reviews | 2017
Shin Jung C. Lee; Eunju Nam; Hyuck Jin Lee; Masha G. Savelieff; Mi Hee Lim