Hyuck Jung
Chungnam National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyuck Jung.
Biosensors and Bioelectronics | 2013
Nguyen Quoc Dung; Dewyani Patil; Hyuck Jung; Dojin Kim
Nanocomposites of CuO and single-wall carbon nanotubes (SWCNTs) were synthesized using an arc-discharging graphite rod that contained copper wires. Simultaneous arc discharges produced a CuO-SWCNT composite network. The crystalline structure and morphology of the CuO-SWCNT composite films were investigated using XRD, Raman spectroscopy, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammogram and amperometric measurements in a 0.1 M NaOH solution. The CuO content in the CuO-SWCNT nanocomposites was optimized for nonenzymatic glucose detection. The glucose sensing properties of the optimized CuO-SWCNT electrode showed good stability, selectivity, and linear glucose detection that ranged from 0.05 to 1800 μM with a higher sensitivity of 1610 μA cm⁻² mM⁻¹, a quick response time of 1-2 s, and the lowest limit of detection at 50 nM. The sensing performance was better than the pure CuO and SWCNT sensors, and the synergetic effect of the composite sensor was attributed to the high conductivity network of highly porous nanowires. The sensor also showed a good response in a human serum sample, which proves its high potential towards a commercial nonenzymatic glucose sensor.
Biosensors and Bioelectronics | 2012
Dewyani Patil; Nguyen Quoc Dung; Hyuck Jung; Se Yong Ahn; Dong Mi Jang; Dojin Kim
Cerium oxide nanorods (CeO(2) NRs) were synthesized without templates through a low cost and simple non-isothermal precipitation method. The structure and morphology of CeO(2) NRs were characterized by X-ray diffraction and transmission electron microscopy. The CeO(2) NRs films, deposited on indium tin oxide (ITO)-coated glass substrates through electrophoretic deposition, were used for the immobilization of glucose oxidase (GOx). Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy were used to characterize the CeO(2) NRs/ITO and GOx/CeO(2) NRs/ITO electrodes. The GOx/CeO(2) NRs/ITO electrode exhibits a linear range for the detection of glucose from 2 to 26 mM (correlation coefficient: 0.99) at 1-2s response time. Biosensor sensitivity is 0.165 μA mM(-1) cm(-2) with 100 μM detection limit. The anti-interference ability of the biosensor was also examined. The mediator-less application of CeO(2) NRs for glucose sensing was demonstrated.
Journal of Materials Chemistry | 2012
Hoang Nhat Hieu; Nguyen Minh Vuong; Hyuck Jung; Dong Mi Jang; Dojin Kim; Hyojin Kim; Soon-Ku Hong
Zinc oxide (ZnO) hollow hemisphere (HS) and urchin-like (UL) structures were fabricated and examined for application to a gas sensor. Films of hollow ZnO-HS arrays floating over substrates were synthesized via Zn sputtering onto the template of a polystyrene sphere array followed by oxidation. Growing ZnO nanorods upon HS surfaces via a hydrothermal method formed hollow ZnO–UL structures. The thicknesses of the HS films and the lengths of nanorods in the UL structures were varied to obtain the maximum response to NO gas. Both sensor structures showed a sensing of tens of parts per billion of levels of NO concentrations with good response and gas selectivity. The highest response was realized through the thinness and the open porosity of the structures. The surface depletion determined the sensor response signal for the sensor geometry with the highest response.
Journal of Materials Chemistry | 2012
Nguyen Minh Vuong; Hyuck Jung; Dojin Kim; Hyojin Kim; Soon-Ku Hong
Here, we used NO as a test gas to propose a strategy for a nanowire gas sensor with the maximum response—the lowest detection limits. The apparatus uses an open space ensemble structure of nanowires with diameters at near total-depletion. For this purpose, a series of open space nanowire structures of WO3 was fabricated with diameters varying from 35 to 82 nm, and a corresponding conduction nanowire sensor model was proposed. The nanowire structures revealed the highest response and a lowest detection limit of 30 ppb. Furthermore, the sensor response was maximum with nanowires of ∼40 nm, which is the diameter corresponding to total depletion conditions; the response was decreased at smaller diameters. The sensor model successfully explained the ultimate lower limits of the size effect in the nanowire sensors. To realize optimum sensor performance with the practical ensemble type nano-structures, an open space morphology is critical to remove the effect of gas diffusion throughout the structure.
Ksme International Journal | 2001
Moon Cheol Won; Sung Soo Kim; Byeong Bae Kang; Hyuck Jung
In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consist of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computer that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control (ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.
Korean Journal of Materials Research | 2009
Donghoon Oh; Youngjin Kang; Hyuck Jung; Hyejin Song; Yousuk Cho; Dojin Kim
Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical andelectrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamberduring the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by thepurification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for thechemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film tobe ~50nm. Optical absorption coefficient due to Beer-Lambert is estimated to be 7.1×10-2nm-1. The film thickness for 80%transparency is about 32nm, and the sheet resistance is 242Ω/sq. The authors also confirmed the relation between electricalconductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.
ieee international nanoelectronics conference | 2010
Hyuck Jung; Donghoon Oh; Dojin Kim
Transparent conductive single-walled carbon nanotube (SWNT) film was fabricated by spraying onto polyethylene terephthalate (PET) substrates coated with a thin polymethyl methacrylate (PMMA) layer. The PMMA layer of a thickness ∼1 µm was used as an adhesion promoter between the PET substrate and the SWNTs. The electrical conductivity of SWNT film was improved by treatments in nitric acid (HNO3) and thionyl chloride (SOCl2). The SWNT film obtained through this manufacturing method showed a sheet resistance of 150 Ω/sq with a transmittance of 80%. The film also revealed a high adhesion on the substrate, and the resistance change with the bending angle was small.
Korean Journal of Materials Research | 2013
Hwanpyo Yi; Hyuck Jung; Ok-Kil Kim; Hyojin Kim; Dojin Kim
Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.
Korean Journal of Materials Research | 2013
Ji-Min Kim; Hyuck Jung; Dojin Kim
A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of 1~25μm. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
Korean Journal of Materials Research | 2010
Dong-Mi Jang; Se-Yong Ahn; Hyuck Jung; Dojin Kim
Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized substrates followed by sputter deposition of Zn and thermal oxidation at in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of . The highest sensor responses were observed at in ZnO film and in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of .