Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun A. Song is active.

Publication


Featured researches published by Hyun A. Song.


Bioconjugate Chemistry | 2008

Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI.

Hyun-Soon Chong; Hyun A. Song; Xiang Ma; Diane E. Milenic; Erik D. Brady; Sooyoun Lim; Haisung Lee; Kwamena E. Baidoo; Dengfeng Cheng; Martin W. Brechbiel

The structurally novel bifunctional ligands C-NETA and C-NE3TA, each possessing both acyclic and macrocyclic moieties, were prepared and evaluated as potential chelates for radioimmunotherapy (RIT) and targeted magnetic resonance imaging (MRI). Heptadentate C-NE3TA was fortuitously discovered during the preparation of C-NETA. An optimized synthetic method to C-NETA and C-NE3TA including purification of the polar and tailing reaction intermediates, tert-butyl C-NETA (2) and tert-butyl C-NE3TA (3) using semiprep HPLC was developed. The new Gd(III) complexes of C-NETA and C-NE3TA were prepared as contrast enhancement agents for use in targeted MRI. The T 1 relaxivity data indicate that Gd(C-NETA) and Gd(C-NE3TA) possess higher relaxivity than Gd(C-DOTA), a bifunctional version of a commercially available MRI contrast agent; Gd(DOTA). C-NETA and C-NE3TA were radiolabeled with (177)Lu, (90)Y, (203)Pb, (205/6)Bi, and (153)Gd; and in vitro stability of the radiolabeled corresponding complexes was assessed in human serum. The in vitro studies indicate that the evaluated radiolabeled complexes were stable in serum for 11 days with the exception being the (203)Pb complexes of C-NETA and C-NE3TA, which dissociated in serum. C-NETA and C-NE3TA radiolabeled (177)Lu, (90)Y, or (153)Gd complexes were further evaluated for in vivo stability in athymic mice and possess excellent or acceptable in vivo biodistribution profile. (205/6)Bi- C-NE3TA exhibited extremely rapid blood clearance and low radioactivity level at the normal organs, while (205/6)Bi- C-NETA displayed low radioactivity level in the blood and all of the organs except for the kidney where relatively high renal uptake of radioactivity is observed. C-NETA and C-NE3TA were further modified for conjugation to the monoclonal antibody Trastuzumab.


Bioorganic & Medicinal Chemistry Letters | 2008

Efficient synthesis and evaluation of bimodal ligand NETA

Hyun-Soon Chong; Hyun A. Song; Noah Birch; Thien Le; Sooyoun Lim; Xiang Ma

The efficient and short synthetic route to the structurally novel bimodal ligand NETA for antibody-targeted radiation therapy (radioimmunotherapy, RIT) of cancer was developed. The structure of NETA was determined by X-ray crystallography. The arsenazo-based UV spectroscopic complexation kinetics data suggest that NETA is a promising chelator for use in RIT applications of (212)Bi, (213)Bi, and (177)Lu.


Bioconjugate Chemistry | 2011

Efficient Bifunctional Decadentate Ligand 3p-C-DEPA for Targeted α-Radioimmunotherapy Applications

Hyun A. Song; Chi Soo Kang; Kwamena E. Baidoo; Diane E. Milenic; Yunwei Chen; Anzhi Dai; Martin W. Brechbiel; Hyun-Soon Chong

A new bifunctional ligand 3p-C-DEPA was synthesized and evaluated for use in targeted α-radioimmunotherapy. 3p-C-DEPA was efficiently prepared via regiospecific ring opening of an aziridinium ion and conjugated with trastuzumab. The 3p-C-DEPA-trastuzumab conjugate was extremely rapid in binding (205/6)Bi, and the corresponding (205/6)Bi-3p-C-DEPA-trastuzumab complex was stable in human serum. Biodistribution studies were performed to evaluate in vivo stability and tumor targeting of (205/6)Bi-3p-C-DEPA-trastuzumab conjugate in tumor bearing athymic mice. (205/6)Bi-3p-C-DEPA-trastuzumab conjugate displayed excellent in vivo stability and targeting as evidenced by low organ uptake and high tumor uptake. The results of the in vitro and in vivo studies indicate that 3p-C-DEPA is a promising chelator for radioimmunotherapy of (212)Bi and (213)Bi.


Journal of Medicinal Chemistry | 2008

Synthesis and evaluation of novel polyaminocarboxylate-based antitumor agents.

Hyun-Soon Chong; Xiang Ma; Haisung Lee; Phuong Bui; Hyun A. Song; Noah Birch

Iron depletion, using iron chelators targeting transferrin receptor (TfR) and ribonucleotide reductase (RR), is proven to be effective in the treatment of cancer. We synthesized and evaluated novel polyaminocarboxylate-based chelators NETA, NE3TA, and NE3TA-Bn and their bifunctional versions C-NETA, C-NE3TA, and N-NE3TA for use in iron depletion tumor therapy. The cytotoxic activities of the novel polyaminocarboxylates were evaluated in the HeLa and HT29 colon cancer cell lines and compared to the clinically available iron depletion agent DFO and the frequently explored polyaminocarboxylate DTPA. All new chelators except C-NETA displayed enhanced cytotoxicities in both HeLa and HT29 cancer cells compared to DFO and DTPA. Incorporation of the nitro functional unit for conjugation to a targeting moiety into the two potent non-functionalized chelators NE3TA and NE3TA-Bn (C-NE3TA and N-NE3TA) was well-tolerated and resulted in a minimal decrease in cytotoxicity. Cellular uptake of C-NE3TA, examined using a confocal microscope, indicates that the chelator is taken up into HT29 cancer cells.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and biological evaluation of a novel decadentate ligand DEPA

Hyun-Soon Chong; Sooyoun Lim; Kwamena E. Baidoo; Diane E. Milenic; Xiang Ma; Fang Jia; Hyun A. Song; Martin W. Brechbiel; Michael R. Lewis

An efficient and short synthetic route to a novel decadentate ligand 7-[2-(bis-carboxymethyl-amino)-ethyl]-4,10-bis-carboxymethyl-1,4,7,10-tetraaza-cyclododec-1-yl-acetic acid (DEPA) with both macrocyclic and acyclic binding moieties is reported. A reproducible and scalable synthetic method to a precursor molecule of DEPA, 1,4,7-tris(tert-butoxycarbonylmethyl)tetraazacyclododecane was developed. DEPA was evaluated as a chelator of (177)Lu, (212)Bi, and (213)Bi for potential use in an antibody-targeted cancer therapy, radioimmunotherapy (RIT) using Arsenazo III based spectroscopic complexation kinetics, in vitro serum stability, and in vivo biodistribution studies.


Nuclear Medicine and Biology | 2013

Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: Radiolabeling, serum stability, and biodistribution and tumor uptake studies

Chi Soo Kang; Hyun A. Song; Diane E. Milenic; Kwamena E. Baidoo; Martin W. Brechbiel; Hyun-Soon Chong

INTRODUCTION Despite the great potential of targeted α-radioimmunotherapy (RIT) as demonstrated by pre-clinical and clinical trials, limited progress has been made on the improvement of chelation chemistry for (212)Bi and (213)Bi. A new bifunctional ligand 3p-C-NETA was evaluated for targeted α RIT using (212)Bi and (213)Bi. METHODS Radiolabeling of 3p-C-NETA with (205/6)Bi, a surrogate of (212)Bi and (213)Bi, was evaluated at pH5.5 and room temperature. In vitro stability of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate was evaluated using human serum (pH7, 37 °C). Immunoreactivity and specific activity of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate were measured. An in vivo biodistribution study was performed to evaluate the in vivo stability and tumor targeting properties of the (205/6)Bi-3p-C-NETA-trastuzumab conjugate in athymic mice bearing subcutaneous LS174T tumor xenografts. RESULT The 3p-C-NETA-trastuzumab conjugate was extremely rapid in complexing with (205/6)Bi, and the corresponding (205/6)Bi-3p-C-NETA-trastuzumab was stable in human serum. (205/6)Bi-3p-C-NETA-trastuzumab was prepared with a high specific activity and retained immunoreactivity. (205/6)Bi-3p-C-NETA-trastuzumab conjugate displayed excellent in vivo stability and targeting as evidenced by low normal organ and high tumor uptake. CONCLUSION The results of the in vitro and in vivo studies indicate that 3p-C-NETA is a promising chelator for RIT applications using (212)Bi and (213)Bi. Further detailed in vivo evaluations of 3p-C-NETA for targeted α RIT are warranted.


Bioorganic & Medicinal Chemistry Letters | 2008

A novel cholic acid-based contrast enhancement agent for targeted MRI

Hyun Soon Chong; Hyun A. Song; Sooyoun Lim; Keith W. MacRenaris; Xiang Ma; Haisung Lee; Phuong Bui; Thomas J. Meade

The novel Gd(III) complexes of heptadentate ligands NE3TA and NE3TA-Bn were prepared, and their relaxivities were measured and favorably compared to the commercially available MRI contrast enhancement agent Gd(DOTA). NE3TA was conjugated with cholic acid (CA) to produce CA-NE3TA. TEM images of Gd(CA-NE3TA) indicate that the complex self-assembles forming nano-sized micelles and displays an over threefold increased relaxivity compared to Gd(DOTA). The new cholic acid-conjugated nanoparticle MR contrast enhancement agent, Gd(CA-NE3TA) possesses great promise for use in targeted MRI.


Journal of Organic Chemistry | 2010

Efficient Synthesis of Functionalized Aziridinium Salts

Hyun-Soon Chong; Hyun A. Song; Mamta Dadwal; Xiang Sun; Inseok Sin; Yunwei Chen

Various aziridinium salts were efficiently prepared from bromination of a series of backbone substituted N,N-bisubstituted beta-amino alcohols and isolated via flash column chromatography. The effect of C-substitution, N-substitution, solvent, leaving group, and counteranions on formation of the isolable aziridinium salts was investigated.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and evaluation of a bifunctional chelate for development of Bi(III)-labeled radioimmunoconjugates

Mamta Dadwal; Chi Soo Kang; Hyun A. Song; Xiang Sun; Anzhi Dai; Kwamena E. Baidoo; Martin W. Brechbiel; Hyun-Soon Chong

A new bifunctional ligand C-DEPA was designed and synthesized as a component for antibody-targeted radiation therapy (radioimmunotherapy, RIT) of cancer. C-DEPA was conjugated to a tumor targeting antibody, trastuzumab, and the corresponding C-DEPA-trastuzumab conjugate was evaluated for radiolabeling kinetics with (205/6)Bi. C-DEPA-trastuzumab conjugate rapidly bound (205/6)Bi, and (205/6)Bi-C-DEPA-trastuzumab conjugate was stable in human serum for 72 h. The in vitro radiolabeling kinetics and serum stability data suggest that C-DEPA is a potential chelate for preclinical RIT applications using (212)Bi and (213)Bi.


Bioorganic & Medicinal Chemistry | 2015

Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of 90Y and 177Lu

Hyun-Soon Chong; Xiang Sun; Yunwei Chen; Inseok Sin; Chi Soo Kang; Michael R. Lewis; Dijie Liu; Varyanna C. Ruthengael; Yongliang Zhong; Ningjie Wu; Hyun A. Song

Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkins lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu.

Collaboration


Dive into the Hyun A. Song's collaboration.

Top Co-Authors

Avatar

Hyun-Soon Chong

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chi Soo Kang

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Sun

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Ma

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Martin W. Brechbiel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yunwei Chen

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diane E. Milenic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sooyoun Lim

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamta Dadwal

Illinois Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge