Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun C. Yoon is active.

Publication


Featured researches published by Hyun C. Yoon.


Lab on a Chip | 2003

A polymer-based microfluidic device for immunosensing biochips

Jong Soo Ko; Hyun C. Yoon; Haesik Yang; Hyeon-Bong Pyo; Kwang Hyo Chung; Sung-Jin Kim; Youn Tae Kim

This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.


Biochip Journal | 2014

Paper-based glucose biosensing system utilizing a smartphone as a signal reader

Hyeong Jin Chun; Yoo Min Park; Yong Duk Han; Yo Han Jang; Hyun C. Yoon

A simple paper-based optical biosensor for glucose monitoring was developed. As a glucose biosensing principle, a colorimetric glucose assay, using glucose oxidase (GOx) and horseradish peroxidase (HRP), was chosen. The enzymatic glucose assay was implanted on the analytical paper-based device, which is fabricated by the wax printing method. The fabricated device consists of two paper layers. The top layer has a sample loading zone and a detection zone, which are modified with enzymes and chromogens. The bottom layer contains a fluidic channel to convey the solution from the loading zone to the detection zone. Double-sided adhesive tape is used to attach these two layers. In this system, when a glucose solution is dropped onto the loading zone, the solution is transferred to the detection zone, which is modified with GOx, HRP, and chromogenic compounds through the connected fluidic channel. In the presence of GOx-generated H2O2, HRP converts chromogenic compounds into the final product exhibiting a blue color, inducing color change in the detection zone. To confirm the changes in signal intensity in the detection zone, the resulting image was registered by a digital camera from a smartphone. To minimize signal interference from external light, the experiment was performed in a specifically designed light-tight box, which was suited to the smartphone. By using the developed biosensing system, various concentrations of glucose samples (0–20 mM) and human serum (5–17 mM) were precisely analyzed within a few minutes. With the developed system, we could expand the applicability of a smartphone to bioanalytical health care.


Analytica Chimica Acta | 1996

Electrochemical characteristics of a carbon-based thick-film l-lactate biosensor using l-lactate dehydrogenase

Hyun C. Yoon; Hak-Sung Kim

Carbon-based thick-film electrodes employing nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenases were constructed by screen printing. Cyclic voltammetric and amperometric investigations of the thick-film electrode showed significantly different electrocatalytic properties toward NADH compared to conventional polished electrodes. Electrochemical oxidation of NADH was attained at the low potential of +350 mV vs. AgAgCl at the thick-film carbon electrode, and this can be attributed to increased electrocatalytic sites due to the rough and jagged electrode surface and the formation of a microelectrode array-like structure at the electrode surface. Based on these observations, a thick-film lactate biosensor using lactate dehydrogenase was developed. Analytical performance of the resulting lactate biosensor was evaluated in terms of sensitivity and stability.


Analytical and Bioanalytical Chemistry | 2011

Multienzyme-modified biosensing surface for the electrochemical analysis of aspartate transaminase and alanine transaminase in human plasma

Yong Duk Han; Seung Yeon Song; Jun Hwang Lee; Dae Sik Lee; Hyun C. Yoon

AbstractWe investigated the electrochemical detection of aspartate transaminase (AST) and alanine transaminase (ALT) by using a multienzyme-modified electrode surface. Determination of the activities of transaminases in human serum is clinically significant because their concentrations and ratios indicate the presence of hepatic diseases or myocardial dysfunction. For electrochemical detection of AST and ALT, enzymes that participate in the reaction mechanism of AST and ALT, such as pyruvate oxidase (POX) and oxaloacetate decarboxylase, were immobilized on an electrode surface by using an amine-reactive self-assembled monolayer and a homobifunctional cross-linker. In the presence of suitable substrates such as l-aspartate (l-alanine) and α-ketoglutarate, AST and ALT generate pyruvate as an enzymatic end product. To determine the activities of AST and ALT, electroanalyses of pyruvate were conducted using a POX and ferrocenemethanol electron shuttle. Anodically generated oxidative currents from multienzyme-mediated reactions were correlated to AST and ALT levels in human plasma. On the basis of the electrochemical analysis, we obtained calibration results for AST and ALT concentrations from 7.5 to 720 units/L in human plasma-based samples, covering the required clinical detection range. FigurePOX-OAC calatytic cycles for AST and ALT analysis


Biosensors and Bioelectronics | 2002

Development of a screen-printed amperometric biosensor for the determination of l-lactate dehydrogenase level

Mi-Young Hong; Je-Young Chang; Hyun C. Yoon; Hak-Sung Kim

We attempted to develop a screen-printed biosensor for the amperometric determination of L-lactate dehydrogenase (LDH) level on the basis of NAD(+)/NADH-dependent dehydrogenase reaction. The printing ink for the working electrode consisted of L-lactate, NAD(+), composite polymer of hydroxyethyl cellulose with ethylene glycol, 3,4-dihydroxybenzaldehyde (3,4-DHB) as an electron transferring mediator, and graphite as the conducting material. The 3,4-DHB was electropolymerized on the carboneous working electrode by potential cycling between -200 and +300 mV vs. Ag/AgCl reference electrode. Through the electrocatalytic reaction with immobilized 3,4-DHB, the NADH generated by the LDH reaction could be efficiently oxidized at lower potential than the unmodified carbon electrode. The analytical performance of the electrode was characterized in terms of linear sensing range and detection limit for LDH. The response from the developed biosensor was linear up to 500 U/l of LDH, and the detection limit of 50 U/l was observed at the signal-to-noise ratio of 3.


Analyst | 2008

Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode

Byoung Yeon Won; Hyun C. Yoon; Hyun Gyu Park

The signal amplification technique of peptide nucleic acid (PNA)-based electrochemical DNA sensor was developed in a label-free and one-step method utilizing enzymatic catalysis. Electrochemical detection of DNA hybridization on a PNA-modified electrode is based on the change of surface charge caused by the hybridization of negatively charged DNA molecules. The negatively charged mediator, ferrocenedicarboxylic acid, cannot diffuse to the DNA hybridized electrode surface due to the charge repulsion with the hybridized DNA molecule while it can easily approach the neutral PNA-modified electrode surface without the hybridization. By employing glucose oxidase catalysis on this PNA-based electrochemical system, the oxidized mediator could be immediately reduced leading to greatly increased electrochemical signals. Using the enzymatic strategy, we successfully demonstrated its clinical utility by detecting one of the mutation sequences of the breast cancer susceptibility gene BRCA1 at a sample concentration lower than 10(-9) M. Furthermore, a single base-mismatched sample could be also discriminated from a perfectly matched sample.


Biochemical and Biophysical Research Communications | 2010

Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR).

Song Yi Bae; Seulgi Kim; Heejin Hwang; Hyun-Kyung Kim; Hyun C. Yoon; Jae Ho Kim; Sj Lee; T. Doohun Kim

The aggregation of α-synuclein is clearly related to the pathogenesis of Parkinsons disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of α-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of α-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF(3)Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF(3)Im] on the α-synuclein tandem repeat (α-TR) in the aggregation process was studied.


Biosensors and Bioelectronics | 2008

A DNA intercalation-based electrochemical method for detection of Chlamydia trachomatis utilizing peroxidase-catalyzed signal amplification

Byoung Yeon Won; Dong Woog Lee; Sung Chul Shin; Dae-Yeon Cho; Soo Suk Lee; Hyun C. Yoon; Hyun Gyu Park

A sensitive electrochemical DNA detection method for the diagnosis of sexually transmitted disease (STD) caused by Chlamydia trachomatis was developed. The method utilizes a DNA-intercalating agent and a peroxidase promoted enzymatic precipitation reaction and involves the following steps. After hybridization of the target C. trachomatis gene with an immobilized DNA capture probe on a gold electrode surface, the biotin-tagged DNA intercalator (anthraquinone) was inserted into the resulting DNA duplex. Subsequently, the polymeric streptavidin/peroxidase complex was applied to the biotin-decorated electrode. Peroxidase catalyzed 4-chloronaphthol to produce insoluble product, which is precipitated on the electrode surface in the presence of hydrogen peroxide. Cyclic voltammograms with the gold electrode exhibited a peak current of ferrocenemethanol in electrolyte, which decreased in a proportional way to increasing concentration of target DNA owing to insulation of electrode surface by the growing insoluble precipitate. Using this strategy, we were able to detect picomolar concentrations of C. trachomatis gene in a sample taken from a real patient.


Analytica Chimica Acta | 2002

Reversible affinity interactions of antibody molecules at functionalized dendrimer monolayer: affinity-sensing surface with reusability

Hyun C. Yoon; Dohoon Lee; Hak-Sung Kim

We described reversible affinity interactions of antibody molecules at a chemically functionalized electrode surface for a repeatedly renewable affinity–biosensing interface. Underlying biofunctionalizable monolayers were constructed with poly(amidoamine) dendrimers, whose surface chain-end groups were double-functionalized with biotinyl ligand and ferrocenyl groups for biospecific recognition and electron transfer reactions, respectively. Functionalized monolayers on gold electrodes provide platform surfaces for biospecific recognition reaction with monoclonal anti-biotin antibody molecules. Bound antibody molecules were dissociated from the surface via displacement reaction by the addition of free biotin in solution, enabling the affinity surface to be renewed and repeatedly utilized. Tracking of the association/dissociation reaction cycles were performed by registering the bioelectrocatalytic currents at the electrode using glucose oxidase (GO x) as a signal generator and ferrocenyl-tethered dendrimer (Fc-D) as an electron transferring mediator in electrolyte. Shielding of the affinity surface by biospecifically bound antibody molecules caused hindrance in electron transfer, resulting in reduced signal from cyclic voltammetry. By the displacement reaction using free biotin, bound antibody molecules were dissociated from the surface and the bioelectrocatalytic signal was restored. With the affinity surfaces constructed in this work, continuous association/dissociation reactions have been successfully accomplished, providing a possibility of reusable affinity biosensing interface.


Analyst | 2002

Biocatalytic precipitation induced by an affinity reaction on dendrimer-activated surfaces for the electrochemical signaling from immunosensors

Hyun C. Yoon; Haesik Yang; Youn Tae Kim

We have developed a strategy of signal generation for immunosensors that transduces biospecific affinity recognition reactions into electrochemical signals. The cyclic voltammetric method, tracking the precipitation of insoluble products onto the sensing surface and the subsequent decrement in the electrode area, was chosen for signal registration. Precipitation of insolubilities was induced by the catalytic reaction of enzymes, which were labeled to the biospecifically attached protein or antibody molecules. As a model system for affinity recognition, we have investigated the functionalization of biotin groups to the sensing monolayer and their biospecific interactions with anti-biotin antibody molecules. The immunosensing interface was developed onto the dendrimer-activated self-assembled monolayers (SAMs), as the base template for the functionalization of the antigen moiety and signal generation. The advantages of using dendrimer-activated SAMs in comparison to the plain modified thiolate SAMs for the sensing surface were shown in terms of sensing performances, and the analytical characteristics of the resulting immunosensor were examined. Additionally, the sensing system was applied for biotin/(strept)avidin couples, extending the applicability of the developed strategy.

Collaboration


Dive into the Hyun C. Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dae-Sik Lee

Electronics and Telecommunications Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge