Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun Ju Song is active.

Publication


Featured researches published by Hyun Ju Song.


Journal of Ethnopharmacology | 2008

The protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: Involvement of HO-1 and ERK

Hyun Ju Song; Chang Yell Shin; Tae Young Oh; Uy Dong Sohn

Chronic users of non-steroidal anti-inflammatory drugs frequently develop ulcerative lesions in their intestines. The purpose of the present study was to investigate whether eupatilin, an active ingredient derived from Artemisia plants, prevents this side effect in vitro. Extracts of the whole herb of Artemisia asiatica Nakai have been used in oriental medicine for the treatment of inflammation. As measured by the MTT assay, the treatment of cultured feline ileal smooth muscle cells (ISMCs) with 2.5mM indomethacin for 2h decreased the cell viability to 43%. Pretreatment with eupatilin resulted in dose-dependent inhibition on indomethacin-induced cell damage. This cytoprotective effect of eupatilin required concentrations of more than 150 microM and incubation periods of longer than 16 h. Pretreatment of ISMC with cycloheximide, an inhibitor of protein synthesis, attenuated the cytoprotective effect of eupatilin, suggesting that eupatilin induces proteins that are responsible for the cytoprotection. Heme oxygenase-1 (HO-1), which is known as a cytoprotective enzyme due to its anti-inflammatory actions, is a candidate protein since ZnPP, an HO-1 inhibitor, repressed the protective effect of eupatilin on indomethacin-induced cell damage in a concentration-dependent manner. Western blot analysis revealed that eupatilin-mediated HO-1 induction occurred in a concentration- and time-dependent manner. We also found that PD98059, a MEK (MAPK/ERK kinase) inhibitor, attenuated the eupatilin-induced HO-1 expression and nuclear translocation of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Taken together, the data imply that eupatilin protects ISMC from cell damage caused by indomethacin, and that its cytoprotective action could be attributed to eupatilin-mediated HO-1 induction via ERK and Nrf2 signaling in ISMC.


Cellular Signalling | 2002

Signal transduction mechanism via adenosine A1 receptor in the cat esophageal smooth muscle cells

Jun O. Shim; Chang Yell Shin; Tai Sang Lee; Sung Jun Yang; Ja Young An; Hyun Ju Song; Tae Hwan Kim; In Hoi Huh; Uy Dong Sohn

We investigated what adenosine receptor type exists and the signaling pathways on the contraction of circular muscle cells isolated by enzymatic digestion from the cat esophagus. Adenosine or the selective A1 receptor agonist R-PIA causes a concentration-dependent contraction. After pretreatment with A1 receptor antagonist, DPCPX, adenosine-mediated contraction was abolished. Adenosine-induced contraction was significantly increased when A1 receptors were preserved by pretreatment with DPCPX followed by inactivation of all unprotected receptors with N-ethylmaleimide. Adenosine- or R-PIA-induced contraction was significantly augmented in the preserved cells and the increase was abolished in the presence of the A1 receptor antagonist DPCPX. PTX abolished contraction induced by adenosine or R-PIA, implying that contraction activated by A1 receptor was coupled to a pertussis toxin (PTX)-sensitive G(i) protein. After permeabilization, contraction was inhibited by G(i2), but not by G(i1) and G(i3), antibodies. These data suggest that adenosine-induced contraction of esophagus depends on PTX-sensitive G(i2.) Adenosine- or R-PIA-induced contraction of esophageal smooth muscle cells was not affected by the phospholipase D (PLD) inhibitor rho-chloromercuribenzoic acid (rhoCMB), phospholipase A(2) (PLA(2)) inhibitor DEDA or PKC antagonist chelerythrine, but was significantly abolished by phospholipase C (PLC) inhibitor, neomycin. PLC-beta3 antibody inhibited R-PIA-induced contraction. R-PIA-induced contraction of esophageal muscle cells was inhibited by IP(3) receptor antagonist heparin, which suggests that the contraction of esophageal smooth muscle cells is dependent on phosphatidylinositol-specific phospholipase (PI-PLC) and IP(3). In conclusion, adenosine- and R-PIA-induced contraction in cat esophageal smooth muscle cell was mediated by A1 receptor. A1 receptor is coupled to PTX-sensitive G protein G(i2), which results in the activation of PI-PLC-beta3. PI hydrolysis by PI-PLC forms IP(3), which binds to IP(3) receptor on endoplasmic reticulum, resulting in the release of intracellular Ca(2+).


Fitoterapia | 2010

Quercetin-3-O-β-d-glucuronopyranoside (QGC)-induced HO-1 expression through ERK and PI3K activation in cultured feline esophageal epithelial cells

Ji Soo Kim; Hyun Ju Song; Sung Kwon Ko; Wan Kyunn Whang; Uy Dong Sohn

Heme oxygenase-1 (HO-1) is one of the antioxidant enzymes which help protect against cellular damage. The present study examined the ability of Quercetin-3-O-beta-D-glucuronopyranoside (QGC), flavonoid glucoside extracted from Rumex Aquaticus Herba, to induce expression of HO-1 and analyzed its signaling mechanism in cultured feline esophageal epithelial cells (EEC). Culture of the esophageal epithelial cells from cat was prepared. The data suggested that QGC could result in enhanced antioxidant enzyme defense system via HO-1 expression and Nrf2 translocation involving both the ERK and PI3K-Akt pathways as well as partly PKC pathways in EEC.


Cellular Signalling | 2002

C2-ceramide-induced circular smooth muscle cell contraction involves PKC-ε and p44/p42 MAPK activation in cat oesophagus

Chang Yell Shin; Yul Pyo Lee; Tai Sang Lee; Hyun Ju Song; Uy Dong Sohn

We investigated the mechanism of C(2)-ceramide (C(2))-induced circular smooth muscle cell contraction in cat oesophagus. C(2) produced contraction of smooth muscle cells isolated by enzymatic digestion, peaked at 30 s and was sustained at a plateau at 5 min. The response to C(2) was concentration-dependent. H-7 or chelerythrine inhibited C(2)-induced contraction, while the diacylglycerol (DAG) kinase inhibitor, R59949, had no effect, suggesting that the contraction is protein kinase C (PKC) pathway-dependent. To test if PKC-mediated contraction may be isozyme-specific, we examined the effects of PKC isozymes antibodies on contraction. PKC-epsilon antibody inhibited the contraction by C(2) but not by PKC-betaII or -gamma, suggesting that PKC-epsilon mediates the contraction by C(2). To characterize the specific PKC isozymes that mediate contraction of the smooth muscle cells, we used, as an inhibitor, N-myristoylated peptides (myr-PKC) derived from the pseudosubstrate sequences of PKC-(alpha)(beta)(gamma), -alpha, -delta, or -epsilon. myr-PKC-epsilon only inhibited the contraction, which was concentration-dependent, suggesting that PKC-epsilon isozyme is involved in the contraction. To examine which mitogen-activated protein kinases (MAPKs) are involved in C(2)-induced contraction, specific MAPK inhibitors (MEK inhibitor, PD98059, and p38 MAPK inhibitor, SB202190) are used. Preincubation of PD98059 blocked the contraction induced by C(2) in a concentration-dependent manner. However, SB202190 had no effects on contraction. C(2) increased the intensity of the bands identified by phosphospecific p44/p42 MAPK antibody and preincubation of PD98059 decreased the intensity of bands as compared with C(2)-stimulated cells. In conclusion, C(2) produced the contraction of smooth muscle cells of cat oesophagus. The contraction is mediated by PKC-epsilon, resulting in the activation of p44/p42 MAPK.


Archives of Pharmacal Research | 2006

The effect of luteolin-7-O-β-d-glucuronopyranoside on gastritis and esophagitis in rats

Young Sil Min; Sung Hyuk Yim; Young Joo Lee; Hyun Ju Song; Jin Hak Kim; In-Hye Ham; Wan Kyun Whang; Uy Dong Sohn

This study evaluated the inhibitory action of luteolin-7-O-β-d-glucuronopyranoside, luteolin which was isolated fromSalix gilgiana leaves, and omeprazole on reflux esophagitis and gastritis in rats. Reflux esophagitis and gastritis were induced surgically and by the administration of indomethacin, respectively. The intraduodenal administration of luteolin-7-O-β-d-glucuronopyranoside decreased the ulcer index, injury area, gastric volume and acid output, and increased the gastric pH compared with luteolin. Luteolin-7-O-β-d-glucuronopyranoside significantly decreased the size of the gastric lesions that had been induced by exposing the gastric mucosa to indomethacin. The malondialdehyde content, which is the end product of lipid peroxidation, was increased significantly after inducing of reflux esophagitis. The malondialdehyde content was decreased by Luteolin-7-O-β-d-glucuronopyranoside but not luteolin or omeprazole. Luteolin-7-O-β-d-glucuronopyranoside has a more potent antioxidative effect than luteolin. Luteolin-7-O-β-d-glucuronopyranoside is a promising drug for the treatment of reflux esophagitis and gastritis.


European Journal of Pharmacology | 2009

Participation of Rho-associated kinase in electrical stimulated and acetylcholine-induced contraction of feline esophageal smooth muscle

Sun Young Park; Hyun Ju Song; Uy Dong Sohn

The RhoA/Rho-associated kinase (ROCK) signaling pathway has been known to play a critical role in Ca(2+)-sensitization of smooth muscle contraction. In this study, we investigated the role of ROCK in feline esophageal body smooth muscle contraction induced by electrical field stimulation and exogenous acetylcholine in vitro. Y-27632 [(+)-(R)-trans-4-(1-aminoethyl)-(4-pyridyl) cyclohexanecarboxamide dihydrochloride], ROCK inhibitor, and specific antibodies to ROCK1 and ROCK2 proteins, which are two isoforms of ROCK, were used. Electrical field stimulation induced off-contraction and on-contraction in the presence of N(G)-nitro-L-arginine methylester, originating from the cholinergic nerve. Y-27632 inhibited both excitatory contractions in a concentration-dependent manner. Exogenous acetylcholine concentration-dependently induced two types of contractions: an initial contraction which occurred immediately after the addition of acetylcholine during short periods, and a sustained contraction which sluggishly continued after the initial contraction. Maximal initial and sustained contractions were reached at 10(-5) M acetylcholine. Y-27632 significantly inhibited both acetylcholine-induced contractions in a concentration-dependent manner. Western blot analysis revealed that acetylcholine maximally increased the level of phosphorylation in the 20 kDa regulatory light chain of myosin II (MLC(20)) at Ser(19) from 0.25 min to 1 min, and then declined after 2 min. The level changes of MLC(20) phosphorylation during the 5 min paralleled with those of acetylcholine-induced contractions. The expression of ROCK1 and ROCK2 in membrane fractions of muscle was increased by acetylcholine; more specifically, ROCK2 continually expressed up to 5 min. Taken together, ROCK may be involved in neural-evoked and acetylcholine-induced contraction via translocation to the membrane in feline esophageal smooth muscle.


The Korean Journal of Physiology and Pharmacology | 2013

Anti-Oxidative and Anti-Inflammatory Effects of QGC in Cultured Feline Esophageal Epithelial Cells

Myeong Jae Lee; Hyun Ju Song; Jun Yeong Jeong; Sun Young Park; Uy Dong Sohn

Quercetin-3-O-β-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. In the present study, anti-oxidative and anti-inflammatory effects of QGC were tested in vitro. Epithelial cells obtained from cat esophagus were cultured. When the cells were exposed to acid for 2 h, cell viability was decreased to 36%. Pretreatment with 50 µM QGC for 2 h prevented the reduction in cell viability. QGC also inhibited the productions of intracellular ROS by inflammatory inducers such as acid, lipopolysaccharide, indomethacin and ethanol. QGC significantly increased the activities of superoxide dismutase (SOD) and catalase, and also induced the expression of SOD2, while it restored the decrease of catalase expression in cells exposed to acid. QGC inhibited NF-κB translocation, cyclooxygenase-2 expression and PGE2 secretion in cells exposed to acid, which plays an important role in the pathogenesis of esophagitis. The data suggest that QGC may well be one of the promising substances to attenuate oxidative epithelial cell injury and inflammatory signaling in esophagus inflammation.


Archives of Pharmacal Research | 2007

The signaling mechanism of the sphingosylphosphorylcholine-induced contraction in cat esophageal smooth muscle cells.

Yong Sung Kim; Hyun Ju Song; Sun Young Park; Young Sil Min; Byung Ok Im; Sung Kwon Ko; Wan Kyun Whang; Uy Dong Sohn

We investigated the signaling pathway on sphingosinephosphorylcholine (SPC) -induced contraction in cat esophageal smooth muscle cells. SPC induced in a dose-dependent manner contractile effect. We have previously shown that lysophospholipid (LPL) receptor subtypes including the S1P1, S1P2, S1P3, and S1P5 receptor are present in esophageal smooth muscle. Only EDG-5 (S1P2) receptor antibody penetration into permeablilized cells inhibited the SPC-induced contraction. Pertussis toxin (PTX) and specific antibodies to Gi1, Gi2, Gi3 and Go inhibited the contraction, implying that SPC-induced contraction depends on PTX-sensitive Gi1, Gi2, Gi3, and Go protein. A phospholipase inhibitor U73122 and incubation of permeabilized cells with PLC-β3 antibody inhibited SPC-induced contraction. The PKC-mediated contraction may be isozyme specific since only PKCε antibody inhibited the contraction. Preincubation with MEK inhibitor PD98059 blocked the SPC-induced contraction, but p38 MAPK inhibitor SB202190 did not. Cotreatment with GF109203X and PD98059 did not show synergistic effects, suggesting that these two kinases are involved in the same signaling pathway in the SPC-induced contraction. The data suggest that S1P-induced contraction in feline esophageal smooth muscle cells depends on activation of the Gi1, Gi2, Gi3 and Go proteins and the PLCβ3 isozyme via the S1P2 receptor, leading to stimulation of a PKCε pathway, which subsequently activates a p44/p42 MAPK pathway.


Archives of Pharmacal Research | 2001

NMDA receptor and NO mediate ET-1-induced behavioral and cardiovascular effects in periaqueductal gray matter of rats

Jung Su Ryu; Chang Yell Shin; Sung Jun Yang; Tai Sang Lee; Hyun O. La; Hyun Ju Song; Yoon Ki Yom; In Hoi Huh; Uy Dong Sohn

Endothelin-1 (ET-1), a novel and potent vasoconstrictor in blood vessel, is known to have some functions in the rat central nervous system (CNS). In order to investigate the central functions of ET-1, ET-1 was administered to the periaqueductal gray area (PAG) of anesthetized rats to induce barrel rolling and increase the arterial blood pressure (ABP). ET-1 had a modulatory effect on central cardiovascular and behavioral control. The selective N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (3 μmol/kg, i.p.) blocked the ET-1 induced responses, and both the nitric oxide synthase (NOS) inhibitor L-NAME (N-nitro-L-arginine methylester 1 mmol/rat) and the nitric oxide (NO) scavenger hemoglobin (15 nmol/rat) had similar effects in reducing the ET-1 (10 pmol/rat)-induced behavioral changes and ABP elevation. However, NO donor sodium nitroprusside (SNP 10 μg, 1 μg/rat) decreased the ET-1 induced ABP elevation, and recovered the ET-1-induced barrel rolling effect that was reduced by MK-801. These results suggest that ET-1 might have neuromodulatory functions such as ABP elevation and barrel rolling induction in the PAG of the rats via the NMDA receptor and NO.


Archives of Pharmacal Research | 2007

Reactive Oxygen Species Mediate ET-1-Induced Activation of ERK1/2 Signaling in Cultured Feline Esophageal Smooth Muscle Cells

Hyun Ju Song; Ji Soo Kim; Myong Jae Lee; Yoon Sung Nam; Uy Dong Sohn

Reactive oxygen species (ROS) have been shown to play a critical role in propagating the signals of several growth factors, peptide hormones, and cytokines, such as epidermal growth factor, insulin, and interleukin-1. We investigated a possible role for ROS generation in mediating the action of ET-1 on activation of ERK1/2 in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated by 10nM ET-1; activation of ERK was examined by western blot analysis with phospho-specific antibodies of ERKs. ET-1 induced ERK1/2 phosphorylation in a dose- and time- dependent manner. ERK1/2 activation by ET-1 reached the maximal levels at 5min showing slight activation up to 20min, and then slowly declined. It was confirmed that the activation of ERK1/2 was reduced by MEK inhibitor PD98059. We observed the dose-dependent inhibitory effect of diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase on the ET-1-enhanced ERK1/2 phosphorylation in ESMC. Pretreatment of ESMC with N-acetylcysteine, a ROS scavenger, also attenuated the ET-1-induced ERK1/2 activation. In addition, DPI significantly inhibited the ET-1 - induced ROS production when ROS was measured as a function of DCF fluorescence. The results suggest that ROS might be critical mediators of the ET-1-induced ERK1/2 signaling events in ESMC.

Collaboration


Dive into the Hyun Ju Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge