Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun Jung Choi is active.

Publication


Featured researches published by Hyun Jung Choi.


Biochimica et Biophysica Acta | 2013

Recruitment of monocytes/macrophages in different tumor microenvironments.

Heon Woo Lee; Hyun Jung Choi; Sang Jun Ha; Kyung Tae Lee; Young Guen Kwon

After emigration from the bone marrow into the peripheral blood, monocytes enter tissues and differentiate into macrophages. Monocytes/macrophages have many roles in immune regulation, angiogenesis, and tumor metastasis and invasion. In addition, studies have revealed that these cells are essential to tumor progression. Recently, an accumulation of evidence has indicated that macrophages in distinct regions of tumor masses have distinct origins. For instance, classical monocytes appear to be a major source of macrophages in tumor epithelial, perivascular, and hypoxic regions. In contrast, non-classical monocytes are an important source of macrophages in the tumor perivascular region. During the past century, it has been demonstrated that several chemoattractants can regulate the recruitment of monocytes/macrophages to tumor sites. Despite the importance of monocytes/macrophages in tumor progression, there had been, until recently, no efforts to summarize receptor-ligand pairs between tumor-derived chemokines and corresponding receptors in monocytes in different microenvironments. In this review, we present a cohesive view of the distinct expression patterns of chemokine receptors in two different monocyte subsets (classical and non-classical monocytes) and describe their roles in monocyte/macrophage recruitment into distinct tumor microenvironments. This review provides insight into the behavior of monocytes/macrophages in different tumor microenvironments.


Iubmb Life | 2012

The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis

Hyun Jung Choi; Hongryeol Park; Heon Woo Lee; Young Guen Kwon

The Wnt signaling pathway is involved in a wide range of developmental and physiological processes, such as cell fate specification, tissue morphogenesis, and homeostasis. Thus, its dysregulation has been found in multiple diseases, including some cardiovascular disorders. The loss or gain of function of Wnt pathway components results in abnormal vascular development and angiogenesis. Further study has revealed that Wnt signaling in endothelial cells appears to contribute to vascular morphogenesis and endothelial cell specification. Owing to the significance of Wnt signaling in angiogenesis, Wnt antagonists have been considered potential treatments for neovascular disorders. In line with this, members of the Dkk protein family (Dkks), well‐known Wnt antagonists, have been recently found to regulate angiogenesis. This review summarizes our present knowledge of the roles of Wnt signaling and Wnt antagonists, particularly Dkks, in angiogenic regulation and explores the therapeutic potential of Wnt antagonists.


Angiogenesis | 2014

Distinct roles of DKK1 and DKK2 in tumor angiogenesis

Hongryeol Park; Hyei Yoon Jung; Hyun Jung Choi; Dong-Young Kim; Ji Young Yoo; Chae-Ok Yun; Jeong Ki Min; Young Myoung Kim; Young Guen Kwon

Tumor angiogenesis is essential for tumor invasive growth and metastasis, and generates abnormal vascular structures unlike developmental neovessel formation. To reduce tumor vascular abnormalities such as leakage and perivascular cell coverage deficiency that limit cancer therapy effectiveness, novel therapeutic approaches focus on vessel normalization. We have previously shown that Dickkopf-1 (DKK1), a Wnt antagonist, inhibits and its homolog DKK2 enhances, angiogenesis in normal tissues. In the present study, we investigated the effects of DKK1 and DKK2 on tumor growth and angiogenesis. Treatment of B16F10 melanoma-bearing mice with adenovirus expressing DKK1 significantly reduced tumor growth but DKK2 increased growth compared with controls. Similar pattern of tumor growth was observed in endothelial-specific DKK1 and DKK2 transgenic mice. Interestingly, tumor vascular density and perfusion were significantly decreased by DKK1 but increased by DKK2. Moreover, coverage of blood vessels by pericytes was reduced by DKK1, while DKK2 increased it. We further observed that DKK1 diminished retinal vessel density and increased avascular area in an in vivo murine model of oxygen-induced retinopathy, whereas DKK2 showed opposite results. These findings demonstrate that DKK1 and DKK2 have differential roles in normalization and functionality of tumor blood vessels, in addition to angiogenesis.


Journal of Biochemistry and Molecular Biology | 2015

Roles of YAP in mediating endothelial cell junctional stability and vascular remodeling

Hyun Jung Choi; Young Guen Kwon

Angiogenesis is a complex process involving dynamic interaction of various cell to cell interactions. Endothelial cell interactions regulated by growth factors, inflammatory cytokines, or hemodynamic stress are critical for balancing vascular quiescence and activation. Yes-associated protein (YAP), an effector of Hippo signaling, is known to play significant roles in maintaining cellular homeostasis. However, its role in endothelial cells for angiogenic regulation remains relatively unexplored. We demonstrated the critical role of YAP in vascular endothelial cells and elucidated the underlying molecular mechanisms involved in angiogenic regulation of YAP. YAP was expressed in active angiogenic regions where endothelial cell junctions were relatively loosened. Consistently, YAP subcellular localization and activity were regulated by VE-cadherin-mediated PI3K/Akt pathway. YAP thereby regulated endothelial sprouting via angiopoietin-2 expression. These results provide an insight into a model of coordinating endothelial junctional stability and angiogenic activation through YAP. [BMB Reports 2015; 48(8): 429-430]


Cellular Signalling | 2016

The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination

Kyu Sung Choi; Hyun Jung Choi; Jin Kyu Lee; Suhjean Im; Haiying Zhang; Yoonjeong Jeong; Jeong Ae Park; In-Kyu Lee; Young Myeong Kim; Young Guen Kwon

Cell-to-cell junctions are critical for the formation of endothelial barriers, and its disorganization is required for sprouting angiogenesis. Members of the angiomotin (AMOT) family have emerged as key regulators in the control of endothelial cell (EC) junction stability and permeability. However, the underlying mechanism by which the AMOT family is regulated in ECs remains unclear. Here we report that HECW2, a novel EC ubiquitin E3 ligase, plays a critical role in stabilizing endothelial cell-to-cell junctions by regulating AMOT-like 1 (AMOTL1) stability. HECW2 physically interacts with AMOTL1 and enhances its stability via lysine 63-linked ubiquitination. HECW2 depletion in human ECs decreases AMOTL1 stability, loosening the cell-to-cell junctions and altering subcellular localization of yes-associated protein (YAP) from cytoplasm into the nucleus. Knockdown of HECW2 also results in increased angiogenic sprouting, and this effect is blocked by depletion of ANG-2, a potential target of YAP. These results demonstrate that HECW2 is a novel regulator of angiogenesis and provide new insights into the mechanisms coordinating junction stability and angiogenic activation in ECs.


Journal of Biochemistry and Molecular Biology | 2018

LDB2 regulates the expression of DLL4 through the formation of oligomeric complexes in endothelial cells

Hyun Jung Choi; Seung Sik Rho; Dong Hoon Choi; Young Guen Kwon

Delta-like ligand 4 (DLL4) expression in endothelial cells is intimately associated with angiogenic sprouting and vascular remodeling, but the precise mechanism of transcriptional regulation of DLL4 remains incompletely understood. Here, we showed that LIM-domain binding protein 2 (LDB2) plays an important role in regulating basal DLL4 and VEGF-induced DLL4 expression. Knockdown of LDB2 using siRNA enhanced endothelial sprouting and tubular network formation in vitro. Injection of ldb2-morpholino resulted in defective development of intersegmental vessels in zebrafish. Reduction or overexpression of LDB2 in endothelial cells decreased or increased DLL4 expression. LDB2 regulated DLL4 promoter activity by binding to its promoter region and the same promoter region was occupied and regulated by the LMO2/TAL1/GATA2 complex. Interestingly, LDB2 also mediated VEGF-induced DLL4 expression in endothelial cells. The regulation of DLL4 by the LDB2 complex provides a novel mechanism of DLL4 transcriptional control that may be exploited to develop therapeutics for aberrant vascular remodeling.


Stroke | 2017

Hemorrhagic transformation after large cerebral infarction in rats pretreated with dabigatran or warfarin

Il Kwon; Sunho An; Jayoung Kim; Seung Hee Yang; Joonsang Yoo; Jang Hyun Baek; Hyo Suk Nam; Young Dae Kim; Hye Sun Lee; Hyun Jung Choi; Ji Hoe Heo

Background and Purpose— It is uncertain whether hemorrhagic transformation (HT) after large cerebral infarction is less frequent in dabigatran users than warfarin users. We compared the occurrence of HT after large cerebral infarction among rats pretreated with dabigatran, warfarin, or placebo. Methods— This was a triple-blind, randomized, and placebo-controlled experiment. After treatment with warfarin (0.2 mg/kg), dabigatran (20 mg/kg), or saline for 7 days, Wistar rats were subjected to transient middle cerebral artery occlusion. As the primary outcome, HT was determined by gradient-recalled echo imaging. For the secondary outcome, intracranial hemorrhage was assessed via gradient-recalled echo imaging in surviving rats and via autopsy for dead rats. Results— Of 62 rats, there were 33 deaths (53.2%, 17 technical reasons). Of the intention-to-treat population, 33 rats underwent brain imaging. HT was less frequent in the dabigatran group than the warfarin group (placebo 2/14 [14%], dabigatran 0/10 [0%], and warfarin 9/9 [100%]; dabigatran versus warfarin; P<0.001). In all 62 rats, compared with the placebo (2/14 [14.3%]), the incidence of intracranial hemorrhage was significantly higher in the warfarin group (19/29 [65.5%]; P=0.003), but not in the dabigatran group (6/19 [31.6%]; P=0.420). Mortality was significantly higher in the warfarin group than the dabigatran group (79.3% versus 47.4%; P=0.022), but not related to the hemorrhage frequency. Conclusions— The risk of HT after a large cerebral infarction was significantly increased in rats pretreated with warfarin than those with dabigatran. However, the results here may not have an exact clinical translation.


Thrombosis Research | 2018

Dabigatran reduces endothelial permeability through inhibition of thrombin-induced cytoskeleton reorganization

Hyun Jung Choi; Na Eun Kim; Jayoung Kim; Sunho An; Seung Hee Yang; Jimin Ha; Sunghee Cho; Il Kwon; Young Dae Kim; Hyo Suk Nam; Ji Hoe Heo

Dabigatran etexilate (DE), a new oral anti-coagulant, is a direct thrombin inhibitor. Clinical trials showed the favorable benefit-to-risk profile of DE compared to warfarin for the prevention of ischemic stroke in patients with atrial fibrillation. Remarkably, patients treated with dabigatran showed reduced rates of intracerebral hemorrhage compared to warfarin. As the breakdown of endothelial barrier integrity is associated with hemorrhagic events and as thrombin increases endothelial permeability, we hypothesized that dabigatran preserves the endothelial barrier by inhibiting thrombin-induced permeability. We assessed leakage of fluorescein isothiocyanate (FITC)-dextran through the endothelial monolayer and measured trans-endothelial electrical resistance of the endothelial monolayer after treatment of thrombin or thrombin pre-incubated with dabigatran. Thrombin increased the permeability of endothelial cells. Dabigatran effectively blocked the ability of thrombin to increase permeability. Dabigatran inhibited the formation of actin stress fibers induced by thrombin and inhibited consequent destabilization of junctional protein complexes and intercellular gap formation. The interaction of thrombin with protease activated receptor-1 activates the Rho A guanosine triphosphate (GTP)ase-myosin light chain (MLC) phosphorylation signaling axis, leading to actin cytoskeleton changes. This signaling pathway was effectively inhibited by dabigatran in endothelial cells. Consistently, the number of phosphorylated MLC-positive cells was significantly decreased in ischemic tissue of rat brains. These results indicate dabigatran blocks the ability of thrombin to induce vascular permeability and the resulting underlying signaling cascade in endothelial cells. Our findings provide evidence that dabigatran may confer a lower risk of intracerebral hemorrhage by preserving endothelial barrier integrity.


Thrombosis and Haemostasis | 2016

Fc-saxatilin suppresses hypoxia-induced vascular leakage by regulating endothelial occludin expression

Hyun Jung Choi; Il Kwon; Na Eun Kim; Jayoung Kim; Sunho An; Sungsoo Kang; Sung Yu Hong; Hyo Suk Nam; Ji Hoe Heo

Vascular leakage due to compromised integrity of the endothelial barrier is closely associated with brain damage in several neurological disorders, including ischaemic stroke. Saxatilin, a snake venom disintegrin containing the Arg-Gly-Asp (RGD) motif, exerts thrombolytic and antiplatelet effects by interacting with multiple integrins on platelets. Integrin signalling is indispensable for regulation of endothelial permeability. Saxatilin may play a role in vascular leakage after ischaemia because it has high affinity for endothelial integrins. Here, we determined whether Fc-saxatilin, an Fc-fusion protein of saxatilin, could prevent vascular leakage under hypoxic or ischaemic conditions. In mouse brain microvascular endothelial cells, hypoxia increased the permeability to FITC-dextran, and this effect was attenuated by Fc-saxatilin treatment. Fc-saxatilin also blocked vascular leakage of Evans Blue in the ischaemic brain induced by middle cerebral artery occlusion in mice. Furthermore, the expression of occludin, a tight junction protein, was reduced by hypoxia in endothelial cells. This downregulation of occludin was attenuated by Fc-saxatilin treatment. We also determined the activity of matrix metalloproteinases (MMPs) 2 and 9 because they are implicated in the degradation of occludin and of the microvascular basal lamina. Hypoxia increased MMP-9 activity, and this increase was attenuated by Fc-saxatilin treatment. Fc-saxatilin specifically bound to integrin αvβ3 of the endothelial cells and inhibited hypoxia-induced activation of FAK, a downstream signalling molecule in integrin-dependent signal transduction. Taken together, these results provide new insights into the mechanism via which Fc-saxatilin, as an integrin antagonist, prevents vascular leakage under ischemic conditions by regulating occludin expression in endothelial tight junctions.


Oncotarget | 2014

Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

Vijayendra Agrawal; Sony Maharjan; Kyeojin Kim; Nam Jung Kim; Jimin Son; Keunho Lee; Hyun Jung Choi; Seung Sik Rho; Sunjoo Ahn; Moo-Ho Won; Sang Jun Ha; Gou Young Koh; Young Myeong Kim; Young-Ger Suh; Young Guen Kwon

Collaboration


Dive into the Hyun Jung Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge