Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun O. Lee is active.

Publication


Featured researches published by Hyun O. Lee.


Nature | 2003

Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

Manuel Alvarez-Dolado; Ricardo Pardal; José M. García-Verdugo; John R. Fike; Hyun O. Lee; Klaus Pfeffer; Carlos Lois; Sean J. Morrison; Arturo Alvarez-Buylla

Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons. Several groups have attributed this apparent plasticity to ‘transdifferentiation’. Others, however, have suggested that cell fusion could explain these results. Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.


Nature Reviews Molecular Cell Biology | 2017

Biomolecular condensates: organizers of cellular biochemistry

Salman F. Banani; Hyun O. Lee; Anthony A. Hyman; Michael K. Rosen

Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.


Genes & Development | 2008

WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase

Jian Hu; Sima Zacharek; Yizhou Joseph He; Hyun O. Lee; Stuart D. Shumway; Robert J. Duronio; Yue Xiong

Tuberous sclerosis (TSC) is an autosomal dominant disease characterized by hamartoma formation in various organs and is caused by mutations targeting either the TSC1 or TSC2 genes. TSC1 and TSC2 proteins form a functionally interdependent dimeric complex. Phosphorylation of either TSC subunit by different kinases regulates the function of TSC and represents a major mechanism to integrate various signals into a centralized cell growth pathway. The majority of disease-associated mutations targeting either TSC1 or TSC2 results in a substantial decrease in protein level, suggesting that protein turnover also plays a critical role in TSC regulation. Here we report that TSC2 protein binds to FBW5, a DDB1-binding WD40 (DWD) protein, and is recruited by FBW5 to the DDB1-CUL4-ROC1 E3 ubiquitin ligase. Overexpression of FBW5 or CUL4A promotes TSC2 protein degradation, and this is abrogated by the coexpression of TSC1. Conversely, depletion of FBW5, DDB1, or CUL4A/B stabilizes TSC2. Ddb1 or Cul4 mutations in Drosophila result in Gigas/TSC2 protein accumulation and cause growth defects that can be partially rescued by Gigas/Tsc2 reduction. These results indicate that FBW5-DDB1-CUL4-ROC1 is an E3 ubiquitin ligase regulating TSC2 protein stability and TSC complex turnover.


The EMBO Journal | 2017

An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function

Daniel Mateju; Titus M. Franzmann; Avinash Patel; Andrii Kopach; Edgar E. Boczek; Shovamayee Maharana; Hyun O. Lee; Serena Carra; Anthony A. Hyman; Simon Alberti

Stress granules (SG) are membrane‐less compartments involved in regulating mRNAs during stress. Aberrant forms of SGs have been implicated in age‐related diseases, such as amyotrophic lateral sclerosis (ALS), but the molecular events triggering their formation are still unknown. Here, we find that misfolded proteins, such as ALS‐linked variants of SOD1, specifically accumulate and aggregate within SGs in human cells. This decreases the dynamics of SGs, changes SG composition, and triggers an aberrant liquid‐to‐solid transition of in vitro reconstituted compartments. We show that chaperone recruitment prevents the formation of aberrant SGs and promotes SG disassembly when the stress subsides. Moreover, we identify a backup system for SG clearance, which involves transport of aberrant SGs to the aggresome and their degradation by autophagy. Thus, cells employ a system of SG quality control to prevent accumulation of misfolded proteins and maintain the dynamic state of SGs, which may have relevance for ALS and related diseases.


Trends in Cell Biology | 2013

Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia

Hyun O. Lee; Caren Norden

During development, cells undergo complex rearrangements that contribute to the final tissue architecture. A characteristic arrangement found in rapidly expanding, highly proliferative tissues is pseudostratified epithelium, which features notably elongated cells with varied nuclear positions along the cell axis. Although anomalies in its structure are implicated in diseases like microcephaly, how pseudostratification is formed and maintained remains elusive. In this review, we focus on a typical feature of pseudostratified epithelia called interkinetic nuclear migration (INM), which describes dynamic movements of nuclei within the elongated cell bodies. We provide an overview of cytoskeletal components underlying INM in different systems, discuss current understanding of its kinetics and timing, and evaluate how conflicting results could be explained through developmental and evolutionary considerations.


Developmental Cell | 2015

Interkinetic Nuclear Migration Is Centrosome Independent and Ensures Apical Cell Division to Maintain Tissue Integrity

Paulina J. Strzyz; Hyun O. Lee; Jaydeep Sidhaye; Isabell P. Weber; Louis C. Leung; Caren Norden

Pseudostratified epithelia are widespread during animal development and feature elongated cells whose nuclei adopt various positions along the apicobasal cell axis. Before mitosis, nuclei migrate toward the apical surface, and subsequent divisions occur apically. So far, the exact purpose of this nuclear migration remained elusive. One hypothesis was that apical migration ensures that nuclei and centrosomes meet for mitosis. We here demonstrate that in zebrafish neuroepithelia apical nuclear migration occurs independently of centrosome position or integrity. It is a highly reproducible phenomenon linked to the cell cycle via CDK1 activity. We propose that the robustness of bringing nuclei apically for mitosis ensures that cells are capable of reintegrating into the epithelium after division. Nonapical divisions lead to cell delamination and formation of cell clusters that subsequently interfere with neuronal layering. Therefore, positioning divisions apically in pseudostratified neuroepithelia could serve to safeguard epithelial integrity and enable proper proliferation and maturation.


Journal of Biological Chemistry | 2008

Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage.

Jonathan R. Hall; Hyun O. Lee; Brandon D Bunker; Elizabeth S. Dorn; Greg C. Rogers; Robert J. Duronio; Jeanette Gowen Cook

The replication factors Cdt1 and Cdc6 are essential for origin licensing, a prerequisite for DNA replication initiation. Mechanisms to ensure that metazoan origins initiate once per cell cycle include degradation of Cdt1 during S phase and inhibition of Cdt1 by the geminin protein. Geminin depletion or overexpression of Cdt1 or Cdc6 in human cells causes rereplication, a form of endogenous DNA damage. Rereplication induced by these manipulations is however uneven and incomplete, suggesting that one or more mechanisms restrain rereplication once it begins. We find that both Cdt1 and Cdc6 are degraded in geminin-depleted cells. We further show that Cdt1 degradation in cells that have rereplicated requires the PCNA binding site of Cdt1 and the Cul4DDB1 ubiquitin ligase, and Cdt1 can induce its own degradation when overproduced. Cdc6 degradation in geminin-depleted cells requires Huwe1, the ubiquitin ligase that regulates Cdc6 after DNA damage. Moreover, perturbations that specifically disrupt Cdt1 and Cdc6 degradation in response to DNA damage exacerbate rereplication when combined with geminin depletion, and this enhanced rereplication occurs in both human cells and in Drosophila melanogaster cells. We conclude that rereplication-associated DNA damage triggers Cdt1 and Cdc6 ubiquitination and destruction, and propose that this pathway represents an evolutionarily conserved mechanism that minimizes the extent of rereplication.


Molecular Biology of the Cell | 2010

Cell type-dependent requirement for PIP box-regulated Cdt1 destruction during S phase.

Hyun O. Lee; Sima Zacharek; Yue Xiong; Robert J. Duronio

Previous studies have shown that Cdt1 overexpression in cultured cells can trigger re-replication, but not whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal mitotic cell cycle progression in vivo. We demonstrate that PIP box–mediated destruction of Cdt1Dup during S phase is necessary for the cell division cycle in Drosophila.


Cell | 2018

A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins.

Jie Wang; Jeong-Mo Choi; Alex S. Holehouse; Hyun O. Lee; Xiaojie Zhang; Marcus Jahnel; Shovamayee Maharana; Regis Lemaitre; Andrei Pozniakovsky; David Drechsel; Ina Poser; Rohit V. Pappu; Simon Alberti; Anthony A. Hyman

Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.


Stem cell reports | 2018

Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

Lara Marrone; Ina Poser; Ian Casci; Julia Japtok; Peter Reinhardt; Antje Janosch; Cordula Andree; Hyun O. Lee; Claudia Moebius; Ellen Koerner; Lydia Reinhardt; Maria Elena Cicardi; Karl Hackmann; Barbara Klink; Angelo Poletti; Simon Alberti; Marc Bickle; Andreas Hermann; Udai Bhan Pandey; Anthony A. Hyman; Jared Sterneckert

Summary Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.

Collaboration


Dive into the Hyun O. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Duronio

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Pfeffer

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge