Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun-Shik Chang is active.

Publication


Featured researches published by Hyun-Shik Chang.


Environmental Science & Technology | 2011

Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation

Wooyong Um; Hyun-Shik Chang; Jonathan P. Icenhower; Wayne W. Lukens; R. Jeffrey Serne; Nikolla P. Qafoku; Joseph H. Westsik; Edgar C. Buck; Steven C. Smith

During the nuclear waste vitrification process volatilized (99)Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [(99)Tc(VII)O(4)(-)] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 μg Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.


Environmental Science & Technology | 2011

Concentration-Dependent Mobility, Retardation, and Speciation of Iodine in Surface Sediment from the Savannah River Site

Saijin Zhang; Jinzhou Du; Chen Xu; Kathy A. Schwehr; Yi-Fang Ho; Hsiu-Ping Li; Kimberly A. Roberts; Daniel I. Kaplan; Robin Brinkmeyer; Chris M. Yeager; Hyun-Shik Chang; Peter H. Santschi

Iodine occurs in multiple oxidation states in aquatic systems in the form of organic and inorganic species. This feature leads to complex biogeochemical cycling of stable iodine and its long-lived isotope, (129)I. In this study, we investigated the sorption, transport, and interconversion of iodine species by comparing their mobility in groundwaters at ambient concentrations of iodine species (10(-8) to 10(-7) M) to those at artificially elevated concentrations (78.7 μM), which often are used in laboratory analyses. Results demonstrate that the mobility of iodine species greatly depends on, in addition to the type of species, the iodine concentration used, presumably limited by the number of surface organic carbon binding sites to form covalent bonds. At ambient concentrations, iodide and iodate were significantly retarded (K(d) values as high as 49 mL g(-1)), whereas at concentrations of 78.7 μM, iodide traveled along with the water without retardation. Appreciable amounts of iodide during transport were retained in soils due to iodination of organic carbon, specifically retained by aromatic carbon. At high input concentration of iodate (78.7 μM), iodate was found to be reduced to iodide and subsequently followed the transport behavior of iodide. These experiments underscore the importance of studying iodine geochemistry at ambient concentrations and demonstrate the dynamic nature of their speciation during transport conditions.


Water Research | 2013

Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water

Paolo Roccaro; Hyun-Shik Chang; Federico G.A. Vagliasindi; Gregory V. Korshin

This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects.


Environmental Science & Technology | 2014

Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions.

Hyun-Shik Chang; Shea W. Buettner; John C. Seaman; van Groos Pg; Dien Li; Aaron D. Peacock; Kirk G. Scheckel; Daniel I. Kaplan

The hypothesis of this study was that iron plaques formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted using native plants (Sparganium americanum) from a wetland located on the Savannah River Site, Aiken, SC. After iron plaques were established during a 73-day period by using an anoxic Fe(II)-rich nutrient solution, a U(VI) amended nutrient solution was added to the system for an additional two months. Compared to plant-free control microcosms, microcosms containing iron plaques successfully stimulated the growth of targeted iron reducing bacteria, Geobacter spp. Their population continuously increased after the introduction of the U(VI) nutrient solution. The reduction of some of the U(VI) to U(IV) by iron reducing bacteria was deduced based on the observations that the aqueous Fe(II) concentrations increased while the U(VI) concentrations decreased. The Fe(II) produced by the iron reducing bacteria was assumed to be reoxidized by the oxygen released from the roots. Advanced spectroscopic analyses revealed that a significant fraction of the U(VI) had been reduced to U(IV) and they were commonly deposited in association with phosphorus on the iron plaque.


Environmental Science & Technology | 2014

Plutonium Immobilization and Remobilization by Soil Mineral and Organic Matter in the Far-Field of the Savannah River Site, U.S.

Chen Xu; Matthew Athon; Yi-Fang Ho; Hyun-Shik Chang; Saijin Zhang; Daniel I. Kaplan; Kathleen A. Schwehr; Nicole DiDonato; Patrick G. Hatcher; Peter H. Santschi

To study the effects of natural organic matter (NOM) on Pu sorption, Pu(IV) and (V) were amended at environmentally relevant concentrations (10(-14) M) to two soils of contrasting particulate NOM concentrations collected from the F-Area of the Savannah River Site. More Pu(IV) than (V) was bound to soil colloidal organic matter (COM). A de-ashed humic acid (i.e., metals being removed) scavenged more Pu(IV,V) into its colloidal fraction than the original HA incorporated into its colloidal fraction, and an inverse trend was thus observed for the particulate-fraction-bound Pu for these two types of HAs. However, the overall Pu binding capacity of HA (particulate + colloidal-Pu) decreased after de-ashing. The presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction in the elevated pH systems, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form.


Environmental Science & Technology | 2011

Strontium and Cesium Release Mechanisms during Unsaturated Flow through Waste-Weathered Hanford Sediments

Hyun-Shik Chang; Wooyong Um; Kenton A. Rod; R. Jeffrey Serne; Aaron Thompson; Nicolas Perdrial; Carl I. Steefel; Jon Chorover

Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.


Environmental Science & Technology | 2015

Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots

Dien Li; Daniel I. Kaplan; Hyun-Shik Chang; John C. Seaman; Paul G. Koster van Groos; Kirk G. Scheckel; Carlo U. Segre; Ning Chen; De-Tong Jiang; Matthew Newville; Antonio Lanzirotti

Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.


Archive | 2010

Immobilization and Limited Reoxidation of Technetium-99 by Fe(II)-Goethite

Wooyong Um; Hyun-Shik Chang; Jonathan P. Icenhower; Nikolla P. Qafoku; Steven C. Smith; R. Jeffrey Serne; Edgar C. Buck; Ravi K. Kukkadapu; Mark E. Bowden; Joseph H. Westsik; Wayne W. Lukens

This report summarizes the methodology used to test the sequestration of technetium-99 present in both deionized water and simulated Hanford Tank Waste Treatment and Immobilization Plant waste solutions.


Archive | 2009

Characterization of Sediments from the Soil Desiccation Pilot Test (SDPT) Site in the BC Cribs and Trenches Area

Wooyong Um; Michael J. Truex; Michelle M. Valenta; Cristian Iovin; Igor V. Kutnyakov; Hyun-Shik Chang; Ray E. Clayton; R. Jeffrey Serne; Anderson L. Ward; Christopher F. Brown; Keith N. Geiszler; Eric T. Clayton; Steven R. Baum; David M. Smith

This technical report documents the results of laboratory geochemical and hydrologic measurements of sediments collected from new borehole 299-E13-65 (C7047) and comparison of the results with those of nearby borehole 299-13E-62 (C5923) both drilled in the BC Cribs and Trenches Area. The total and water-leachable concentrations of key contaminants will be used to update contaminant-distribution conceptual models and to provide more data for improving baseline risk predictions and remedial alternative selections. Improved understanding of subsurface conditions and methods to remediate these principal contaminants can be also used to evaluate the application of specific technologies to other contaminants across the Hanford Site.


Archive | 2012

Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

Jon Chorover; Nico Perdrial; Karl T. Mueller; Caleb Strepka; Peggy OÃÂâÃÂÃÂÃÂÃÂDay; Nelson Rivera; Wooyong Um; Hyun-Shik Chang; Carl I. Steefel; Aaron Thompson

Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

Collaboration


Dive into the Hyun-Shik Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel I. Kaplan

Savannah River National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wooyong Um

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dien Li

Savannah River National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Jeffrey Serne

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kirk G. Scheckel

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan P. Icenhower

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph H. Westsik

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge