Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun Uk Cho is active.

Publication


Featured researches published by Hyun Uk Cho.


Water Research | 2014

Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

Hyun Min Jang; Hyun Uk Cho; Sang Kyu Park; Jeong Hyub Ha; Jong Moon Park

In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.


Water Research | 2011

Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process

Young Mo Kim; Hyun Uk Cho; Dae Sung Lee; Donghee Park; Jong Moon Park

To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene.


Bioresource Technology | 2015

Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent.

Dong Yun Shin; Hyun Uk Cho; Joseph Christian Utomo; Yun-Nam Choi; Xu Xu; Jong Moon Park

Microalgae, Scenedesmus bijuga, was cultivated in anaerobically digested food wastewater effluent (FWE) to treat the wastewater and produce biodiesel simultaneously. Three different mixing ratios with municipal wastewater were compared for finding out proper dilution ratio in biodiesel production. Of these, 1/20 diluted FWE showed the highest biomass production (1.49 g/L). Lipid content was highest in 1/10 diluted FWE (35.06%), and the lipid productivity showed maximum value in 1/20 diluted FWE (15.59 mg/L/d). Nutrient removal was also measured in the cultivation. FAME compositions were mainly composed of C16-C18 (Over 98.94%) in S. bijuga. In addition, quality of FAMEs was evaluated by Cetane Number (CN) and Bis-allylic Position Equivalent (BAPE).


Bioresource Technology | 2015

Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

Hyun Uk Cho; Young Mo Kim; Yun-Nam Choi; Xu Xu; Dong Yun Shin; Jong Moon Park

The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris.


Journal of Environmental Management | 2013

An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation

Hyun Uk Cho; Sang Kyu Park; Jeong Hyub Ha; Jong Moon Park

Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production.


Bioresource Technology | 2011

Response of nitrifying bacterial communities to the increased thiocyanate concentration in pre-denitrification process

Young Mo Kim; Hyun Uk Cho; Dae Sung Lee; Chul Park; Donghee Park; Jong Moon Park

Changes in process performance and the nitrifying bacterial community associated with an increase of thiocyanate (SCN-) loading were investigated in a pre-denitrification process treating industrial wastewater. The increased SCN- loading led to the concentration of total nitrogen (TN) in the final effluent, but increasing the internal recycling ratio as an operation parameter from 2 to 5 resulted in a 21% increase in TN removal efficiency. In the aerobic reactor, we found that the Nitrosomonas europaea lineage was the predominant ammonia oxidizing bacteria (AOB) and the percentages of the AOB population within the total bacteria increased from about 4.0% to 17% with increased SCN- concentration. The increase of nitrite loading seemed to change the balance between Nitrospira and Nitrobacter, resulting in the high dominance of Nitrospira over Nitrobacter. Meanwhile, a Thiobacillus thioparus was suggested to be the main microorganism responsible for the SCN- biodegradation observed in the system.


Bioresource Technology | 2017

Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions

Hyun Uk Cho; Young Mo Kim; Jong Moon Park

The goal of this study was to investigate the influences of gradually mixotrophic culture conditions on microalgal biomass and lipid production by a consortium of indigenous microalgae and bacteria present in raw municipal wastewater. Lab-scale photobioreactors containing the consortium were operated in repeated batch mode. Initial cultivation (phase I) was performed using only the municipal wastewater, then 10% and 25% of the reactor volumes were replaced with the effluent from a sewage sludge fermentation system producing volatile fatty acids (SSFV) at the beginnings of phase II and phase III, respectively. The highest biomass productivity (117.1±2.7mg/L/d) was attained during phase II, but the lipid productivity (17.2±0.2mg/L/d) was attained during phase III. The increase in the effluent from the SSFV influenced microalgal diversity with a preference for Chlorella sp., but bacterial diversity increased significantly during phase III.


Bioresource Technology | 2015

Influence of temperature on volatile fatty acid production and microbial community structure during anaerobic fermentation of microalgae.

Hyun Uk Cho; Young Mo Kim; Yun-Nam Choi; Hye Gyeong Kim; Jong Moon Park

The objectives of this study were to investigate the effect of operating temperature on volatile fatty acids (VFAs) production from microalgal biomass, and to clarify the relationships between VFAs accumulation at different temperatures and the corresponding bacterial communities. The VFA yields were 0.10±0.017, 0.12±0.008, and 0.34±0.009 g/g VS at 35, 45, and 55 °C, respectively. The proportion of acetic acid decreased from 85.6% to 65.8% as operating temperature increased, whereas that of propionic acid increased from near 0% to 15.5% and that of iso-valeric acid remained relatively stable (10.2-11.2%). Bacterial communities at different operating temperatures consisted mostly of the phyla Proteobacteria, Bacteroidetes, and Firmicutes, which can degrade organic compounds effectively. Bacillus sp. was more predominant at 55 °C than at mesophilic temperatures, suggesting that this microorganism contributed significantly to the higher hydrolysis rate and VFA yield at this operating temperature.


Bioresource Technology | 2018

Biodiesel production by various oleaginous microorganisms from organic wastes

Hyun Uk Cho; Jong Moon Park

Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes.


Bioresource Technology | 2017

Volatile fatty acid recovery by anaerobic fermentation from blue-green algae: Effect of pretreatment

Hyun Uk Cho; Hye Gyeong Kim; Young Mo Kim; Jong Moon Park

The aims of this study were to quantify how pretreatment affects production of volatile fatty acids (VFAs) from cyanobacterial biomass and production of subsequent microbial lipid by an oleaginous microorganism that uses the VFAs as carbon sources. The highest biomass solubilization was obtained using thermal-alkaline (th-alkaline) pretreatment (33.1%), followed by alkaline pretreatment (29.1%), and thermal pretreatment (7.2%), but the highest VFA yield was obtained using alkaline pretreatment (0.54±0.02g/gVS), followed by the untreated condition (0.47±0.03g/gVS), and th-alkaline pretreatment (0.44±0.02g/gVS). Although VFA yield was higher using alkaline pretreatment condition than in the untreated condition, the difference was not great. However, lipid productivity by Cryptococcus curvatus after the alkaline pretreatment condition was 2.0-fold higher than that under the untreated condition. This study confirmed the feasibility of using biologically produced VFAs from cyanobacterial biomass for microbial lipid production by the oleaginous microorganism.

Collaboration


Dive into the Hyun Uk Cho's collaboration.

Top Co-Authors

Avatar

Jong Moon Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Young Mo Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yun-Nam Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sang Kyu Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dae Sung Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Donghee Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hye Gyeong Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun Min Jang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyung Hwa Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xu Xu

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge