Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyung J. Kim is active.

Publication


Featured researches published by Hyung J. Kim.


ACS Nano | 2010

Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.

Youngseon Shim; Hyung J. Kim

Supercapacitors composed of carbon nanotube (CNT) micropores in the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4(-)) are studied via molecular dynamics (MD)computer simulations. It is found that the distribution of RTIL ions inside the micropore varies significantly with the pore size. Internal solvation of small (6,6) and (7,7) CNTs with an electrified interior wall is effected almost exclusively via counterions. Surprisingly, these counterions, even though they all have the same charge, lead to a charge density characterized by multiple layers with alternating signs. This intriguing feature is attributed to the extended nature of RTIL ion charge distributions, which result in charge separation through preferential orientation inside the electrified nanotubes. In the case of larger (10,10) and (15,15) CNTs, counterions and coions develop multilayer solvation structures. The specific capacitance normalized to the pore surface area is found to increase as the CNT diameter decreases from (15,15) to (7,7). As the pore size further reduces from (6,6) to(5,5), however, the specific capacitance diminishes rapidly. These findings are in excellent agreement with recent experiments with carbon-based materials. A theoretical model based on multiple charge layers is proposed to understand both the MD and experimental results.


Journal of Chemical Physics | 2003

Solvation in molecular ionic liquids

Youngseon Shim; Jinsong Duan; M. Y. Choi; Hyung J. Kim

Solvation in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate is studied via molecular dynamics simulations by employing a diatomic solute as a probe. It is found that solvent fluctuations are chacterized by at least two distinct dynamics occurring on vastly different time scales—rapid subpicosecond dynamics arising mainly from anion translations and slow relaxation ascribed to anion and cation diffusions. Fast subpicosecond dynamics are responsible for more than 50% of the entire relaxation of solvent fluctuations in the temperature range 350 K⩽T⩽500 K. It is also found that solvent spectral shifts and reorganization free energies in these liquids are comparable to those in ambient water.


ACS Nano | 2009

Solvation of carbon nanotubes in a room-temperature ionic liquid.

Youngseon Shim; Hyung J. Kim

Single- and double-walled carbon nanotubes in the armchair configuration solvated in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4−) are studied via molecular dynamics (MD) computer simulations. Cations and anions show smeared-out, cylindrical shell-like distributions outside of the nanotubes irrespective of the nanotube diameter. The ion distributions inside the nanotubes vary markedly with their diameter. For example, in the case of (n,n) single-walled nanotubes, EMI+ and BF4− ions separately form single-shell zigzag and chiral distributions for (8,8) and (10,10), respectively, while (12,12) develops a second internal solvation structure. The first internal solvation shell of (15,15) nanotubes consists of alternating layers of cations and anions along the nanotube axis. In the azimuthal direction, these cations and anions, respectively, form a pentagonal structure, whereas the corresponding ions for (20,20) show disordered octagonal structures. The smallest nan...


Journal of Chemical Physics | 2005

A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium solvation dynamics

Youngseon Shim; Myung-Un Choi; Hyung J. Kim

The molecular dynamics (MD) simulation study of solvation structure and free energetics in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate using a probe solute in the preceding article [Y. Shim, M. Y. Choi and H. J. Kim, J. Chem. Phys. 122, 044510 (2005)] is extended to investigate dynamic properties of these liquids. Solvent fluctuation dynamics near equilibrium are studied via MD and associated time-dependent friction is analyzed via the generalized Langevin equation. Nonequilibrium solvent relaxation following an instantaneous change in the solute charge distribution and accompanying solvent structure reorganization are also investigated. Both equilibrium and nonequilibrium solvation dynamics are characterized by at least two vastly different time scales--a subpicosecond inertial regime followed by a slow diffusive regime. Solvent regions contributing to the subpicosecond nonequilibrium relaxation are found to vary significantly with initial solvation configurations, especially near the solute. If the solvent density near the solute is sufficiently high at the outset of the relaxation, subpicosecond dynamics are mainly governed by the motions of a few ions close to the solute. By contrast, in the case of a low local density, solvent ions located not only close to but also relatively far from the solute participate in the subpicosecond relaxation. Despite this difference, linear response holds reasonably well in both ionic liquids.


Journal of Physical Chemistry B | 2008

Dielectric relaxation, ion conductivity, solvent rotation, and solvation dynamics in a room-temperature ionic liquid.

Youngseon Shim; Hyung J. Kim

Dielectric susceptibility and related conductivity of the neat ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI+PF6-) are studied via molecular dynamics computer simulations. Both ion translations and reorientations contribute to dielectric relaxation, while their cross-correlation does not play any significant role. Interestingly, ion translational dynamics are found to enhance the static dielectric constant epsilon 0. The increment in epsilon 0 is attributed to rapid development of large anticorrelation in the autocorrelation function of the ionic current, i.e., hindered ion translations of strong librational character. One consequence of hindered translational dynamics is that the real part of conductivity has a maximum in the terahertz region and decreases with diminishing frequency. This in turn yields significant dielectric absorption in the far-IR region, consonant with recent terahertz time-domain spectroscopy measurements. Reorientational dynamics of cations show a marked deviation from diffusion. The well-known relation in the diffusion regime for reorientational correlation times tau R(l) proportional, variant [ l( l + 1)] (-1) fails completely for EMI+PF6-, where l is the order of Legendre polynomials used in the expansion of reorientational time correlation functions. It is found that dielectric continuum theory generally does not provide a reliable framework to describe solvation dynamics in EMI+PF6- even though the inclusion of ion conductivity in dielectric relaxation tends to improve the continuum description. This is ascribed mainly to electrostrictive effects absent in many continuum formulations.


Journal of Physical Chemistry A | 2011

Electronic Structure and Normal Vibrations of the 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ion Pair

Nilesh R. Dhumal; Hyung J. Kim; Johannes Kiefer

Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.


Journal of Physical Chemistry A | 2009

Molecular Interactions in 1-Ethyl-3-methylimidazolium Acetate Ion Pair: A Density Functional Study

Nilesh R. Dhumal; Hyung J. Kim; Johannes Kiefer

The density functional method is used to obtain the molecular structure, electron density topography, and vibrational frequencies of the ion pair 1-ethyl-3-methylimidazolium acetate. Different conformers are simulated on the basis of molecular interactions between the 1-ethyl-3-methylimidazolium cation and acetate anion. The lowest energy conformers exhibit strong C-H...O interionic interactions compared with other conformers. Characteristic vibrational frequencies of the ion pair and their shifts with respect to free ions are analyzed via the natural bond orbitals and difference electron density maps coupled with molecular electron density topology. Theoretically scaled vibrational frequencies are also compared with the spontaneous Raman scattering and attenuated total reflection infrared absorption measurements.


Journal of Chemical Physics | 2005

A molecular dynamics computer simulation study of room-temperature ionic liquids. I. Equilibrium solvation structure and free energetics

Youngseon Shim; Myung-Un Choi; Hyung J. Kim

Solvation in 1-ethyl-3-methylmidazolium chloride and in 1-ethyl-3-methylimidazolium hexafluorophosphate near equilibrium is investigated via molecular dynamics computer simulations with diatomic and benzenelike molecules employed as probe solutes. It is found that electrostriction plays an important role in both solvation structure and free energetics. The angular and radial distributions of cations and anions become more structured and their densities near the solute become enhanced as the solute charge separation grows. Due to the enhancement in structural rigidity induced by electrostriction, the force constant associated with solvent configuration fluctuations relevant to charge shift and transfer processes is also found to increase. The effective polarity and reorganization free energies of these ionic liquids are analyzed and compared with those of highly polar acetonitrile. Their screening behavior of electric charges is also investigated.


Journal of Physical Chemistry A | 2014

Molecular Structure and Interactions in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)imide

Nilesh R. Dhumal; Kristina Noack; Johannes Kiefer; Hyung J. Kim

Electronic structure theory (density functional and Møller-Plesset perturbation theory) and vibrational spectroscopy (FT-IR and Raman) are employed to study molecular interactions in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Different conformers of a cation-anion pair based on their molecular interactions are simulated in the gas phase and in a dielectric continuum solvent environment. Although the ordering of conformers in energy varies with theoretical methods, their predictions for three lowest energy conformers in the gas phase are similar. Strong C-H---N interactions between the acidic hydrogen atom of the cation imidazole ring and the nitrogen atom of the anion are predicted for either the lowest or second lowest energy conformer. In a continuum solvent, different theoretical methods yield the same ion-pair conformation for the lowest energy state. In both phases, the density functional method predicts that the anion is in a trans conformation in the lowest energy ion pair state. The theoretical results are compared with experimental observations from Raman scattering and IR absorption spectroscopies and manifestations of the molecular interactions in the vibrational spectra are discussed. The directions of the frequency shifts of the characteristic vibrations relative to the free anion and cation are explained by calculating the difference electron density coupled with electron density topography.


Magnetic Resonance in Medicine | 1999

Perfusion analysis using dynamic arterial spin labeling (DASL)

Emmanuel L. Barbier; Afonso C. Silva; Hyung J. Kim; Donald S. Williams; Alan P. Koretsky

A variety of magnetic resonance (MR) techniques have proved useful to quantify perfusion using endogenous water as a blood flow tracer. Assuming that water is a freely diffusable tracer, the model used for these techniques predicts that the quantitation of perfusion is based on three parameters, all of which can depend on blood flow. These are the longitudinal tissue relaxation time, the transit time from point of labeling to tissue, and the difference in tissue MR signal between an appropriate control and the labeled state. To measure these three parameters in parallel, a dynamic arterial spin labeling (DASL) technique is introduced based on the analysis of the tissue response to a periodic time varying degree of arterial spin labeling, called here the labeling function (LF). The LF frequency can be modulated to overdetermine parameters necessary to define the system. MR schemes are proposed to measure the tissue response to different LF frequencies efficiently. Sprague‐Dawley rats were studied by DASL, using various frequencies for the LF and various arterial pCO2 levels. During data processing, the periodic behavior of the tissue response to the LF allowed for frequency filtering of periodic changes in signal intensity unrelated to perfusion and arterial spin labeling. Measures of transit time, tissue longitudinal relaxation time, and perfusion agreed well over a range of LF frequencies and with previous results. DASL shows potential for more accurately quantifying perfusion as well as measuring transit times associated with arterial spin labeling techniques. Magn Reson Med 41:299–308, 1999.

Collaboration


Dive into the Hyung J. Kim's collaboration.

Top Co-Authors

Avatar

Youngseon Shim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Nilesh R. Dhumal

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonggu Jeon

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James T. Hynes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

YounJoon Jung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hadi Abroshan

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

M. Y. Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Daun Jeong

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge