Hyung Kyu Yoon
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyung Kyu Yoon.
Experimental and Molecular Medicine | 2010
Jeong Sup Song; Chun Mi Kang; Hyeon Hui Kang; Hyung Kyu Yoon; Young Kyoon Kim; Kwan Hyung Kim; Hwa Sik Moon; Sung Hak Park
CXC chemokine receptor 4 (CXCR4), which binds the stromal cell-derived factor-1 (SDF-1), has been shown to play a critical role in mobilizing the bone marrow (BM)-derived stem cells and inflammatory cells. We studied the effects of AMD3100, CXCR4 antagonist, on a murine bleomycin-induced pulmonary fibrosis model. Treatment of mice with AMD3100 in bleomycin-treated mice resulted in the decrease of SDF-1 in bronchoalveolar lavage (BAL) fluids at an early stage and was followed by the decrease of fibrocytes in the lung. AMD3100 treatment decreased the SDF-1 mRNA expression, fibrocyte numbers in the lung at an early stage (day 3) and CXCR4 expression at the later stage (day 7 and 21) after bleomycin injury. The collagen content and pulmonary fibrosis were significantly attenuated by AMD3100 treatment in later stage of bleomycin injury. AMD3100 treatment also decreased the murine mesenchymal and hematopoietic stem cell chemotaxis when either in the stimulation with bleomycin treated lung lysates or SDF-1 in vitro. In BM stem cell experiments, the phosphorylation of p38 MAPK which was induced by SDF-1 was significantly blocked by addition of AMD3100. Our data suggest that AMD3100 might be effective in preventing the pulmonary fibrosis by inhibiting the fibrocyte mobilization to the injured lung via blocking the SDF-1/CXCR4 axis.
Respiration | 2011
Chin Kook Rhee; Sang Haak Lee; Hyung Kyu Yoon; Seok Chan Kim; Sook Young Lee; Soon Suk Kwon; Young Kyoon Kim; Kwan Hyoung Kim; Tae-Jung Kim; Jin Woo Kim
Background: The tyrosine kinase inhibitor imatinib mesylate was developed as an inhibitor of the kinase activity of BCR-ABL. However, imatinib also has potent inhibitory activity against the platelet-derived growth factor receptor (PDGFR). Nilotinib is approved for treating patients with chronic myeloid leukemia showing resistance or intolerance to imatinib. Like imatinib, nilotinib selectively inhibits the tyrosine kinase activity of PDGFR. Objectives: We examined the effect of imatinib and nilotinib on acute lung injury and pulmonary fibrosis in a mouse model. Methods: Mice were treated by intratracheal instillation of bleomycin. Imatinib or nilotinib were administered by oral gavage. To study the early inflammatory and late fibrotic phases of lung injury, mice were sacrificed on days 3, 7, 14 and 21 after bleomycin instillation. Results: Histopathology showed that imatinib and nilotinib attenuated the extent of lung injury and fibrosis. The numbers of inflammatory cells and levels of IL-6, IL-1β and tumor necrosis factor-α were decreased in the imatinib and nilotinib groups on days 3 and 7. Imatinib and nilotinib therapy significantly reduced the levels of hydroxyproline on days 14 and 21, which was accompanied by decreased expression levels of transforming growth factor (TGF)-β1 and PDGFR-β. Imatinib and nilotinib also significantly reduced the expression levels of the genes for TGF-β1 and platelet-derived growth factor (PDGF). Imatinib and nilotinib treatment also significantly inhibited the PDGF-induced proliferation of lung fibroblasts in vitro. When imatinib or nilotinib was given 7 days after the instillation of bleomycin, only nilotinib attenuated pulmonary fibrosis. Conclusions: Imatinib and nilotinib attenuated bleomycin-induced acute lung injury and pulmonary fibrosis in mice. In a therapeutic model, nilotinib showed more potent antifibrotic effects than imatinib.
Respiratory Research | 2007
Jeong Sup Song; Chun Mi Kang; Moon Bin Yoo; Seung Joon Kim; Hyung Kyu Yoon; Young Kyoon Kim; Kwan Hyung Kim; Hwa Sik Moon; Sung Hak Park
BackgroundNitric oxide (NO) is generally increased during inflammatory airway diseases. This increased NO stimulates the secretion of mucin from the goblet cell and submucosal glands but the mechanism is still unknown precisely. In this study, we investigated potential signaling pathways involving protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the NO-induced MUC5AC mucin gene and protein expression in A549 cells.MethodsNitric oxide was donated to the A549 cells by NOR-1. MUC5AC mucin levels were assayed by enzyme-linked immunosorbent assay (ELISA). MUC5AC promoter activity was determined by measuring luciferase activity after the lysing the transfected cells. Activation of PKC isoforms were measured by assessing the distribution of the enzyme between cytosolic and membrane fractions using immunoblotting. Immunoblotting experiments using a monoclonal antibody specific to PKC isoforms were performed in the cytosol and membrane fractions from A549 cells. Western blot analysis for pERK and p38 were performed using the corresponding antibodies from the cell lysates after donating NO to the A549 cells by NOR-1.ResultsThe transcriptional activity of MUC5AC promoter was maximal at the concentration of 0.1 mM NOR-1 for 1 hour incubation in transfected A549 cells. (±)-(E)-methyl-2-((E)-hydroxyimino)-5-nitro-6-methoxy-3-hexenamide (NOR-1) markedly displaced the protein kinase C (PKC)α and PKCδ from the cytosol to the membrane. Furthermore, the PKC-α,βinhibitors, GÖ6976 (10 nM) and PKCδ inhibitors, rottlerin (4 μM) inhibited the NOR-1 induced migration of PKCα and PKCδ respectively. NOR-1 also markedly increased the MUC5AC promoter activity and mRNA expression, mucin synthesis and ERK1/2 phosphorylation. The PKC inhibitors also inhibited the NOR-1 induced MUC5AC mRNA and MUC5AC protein synthesis by inhibiting the activation of PKCα and PKCδ with ERK1/2 pathways.ConclusionExogenous NO induced the MUC5AC mucin gene and protein through the PKCα and PKCδ – ERK pathways in A549 cells. Inhibition of PKC attenuated NO-mediated MUC5AC mucin synthesis. In view of this findings, PKC inhibitors might be useful in the treatment of bronchial asthma and chronic bronchitis patients where NO and mucus are increased in the bronchial airways.
Annals of Allergy Asthma & Immunology | 2012
Ji Young Kang; Chin Kook Rhee; Ju Sang Kim; Chan Kwon Park; Seung Joon Kim; Sang Haak Lee; Hyung Kyu Yoon; Soon Seog Kwon; Young Kyoon Kim; Sook Young Lee
BACKGROUND Recent evidence suggests that acetylcholine acting through muscarinic receptors may play an inhibitory role in the mechanisms that drive the structural changes in the airways called airway remodeling. The novel anticholinergic drug tiotropium bromide, which selectively antagonizes muscarinic receptors, especially the M3 subtype, and is long acting, could be beneficial in attenuating airway remodeling in chronic asthma. OBJECTIVE To investigate the effect of tiotropium bromide on parameters of airway remodeling, including smooth muscle hypertrophy and peribronchial thickening, in a mouse model of chronic asthma. METHODS To develop the murine models of acute and chronic asthma, BALB/c mice were sensitized and challenged to ovalbumin for 1 and 3 months, respectively. The effect of tiotropium bromide (0.1mM in 50 μL of phosphate-buffered saline) on pulmonary inflammation and remodeling was evaluated. The expression of muscarinic receptors M2 and M3 was analyzed. RESULTS In the chronic asthma model, the tiotropium-treated group significantly decreased smooth muscle thickening and peribronchial collagen deposition. As for pulmonary inflammation, the chronic asthma model had a reduction of inflammatory cells and T(H)2 cytokines by tiotropium bromide, but the effects in the asthma acute model were reversed. In the chronic asthma model, expression of the M3 receptor was inhibited and that of the M2 receptor was elevated by the administration of tiotropium bromide. CONCLUSION This study suggests that tiotropium bromide might have an inhibitory effect on airway remodeling in a murine model of chronic asthma. Differential effects on muscarinic receptor subtypes may explain why tiotropium bromide has different effects on acute and chronic asthma.
Critical Care | 2009
Chin Kook Rhee; Ji Young Kang; Yong Hyun Kim; Jin Woo Kim; Hyung Kyu Yoon; Seok Chan Kim; Soon Suk Kwon; Young Kyoon Kim; Kwan Hyung Kim; Hwa Sik Moon; Sung Hak Park; Hee Je Kim; Seok Lee; Jeong Sup Song
IntroductionNeutropenia recovery may be associated with deterioration in oxygenation and exacerbation of pre-existing pulmonary disease. However, risk factors for acute respiratory distress syndrome (ARDS) during neutropenia recovery in patients with hematologic malignancies have not been studied.MethodsWe studied critically ill patients with hematologic malignancies with the dual objectives of describing patients with ARDS during neutropenia recovery and identifying risk factors for ARDS during neutropenia recovery. A cohort of consecutive neutropenic patients with hematologic malignancies who were admitted to the intensive care unit (ICU) was studied. During a 6-year period, 71 patients recovered from neutropenia, of whom 38 (53.5%) developed ARDS during recovery.ResultsCompared with non-ARDS patients, patients who experienced ARDS during neutropenia recovery were more likely to have pneumonia, be admitted to the ICU for respiratory failure, and receive mechanical ventilator therapy. The in-ICU mortality was significantly different between the two groups (86.8% versus 51.5%, respectively, for patients who developed ARDS during neutropenia recovery versus those who did not during neutropenia recovery). In multivariate analysis, only occurrence of pneumonia during the neutropenic episode was associated with a marked increase in the risk of ARDS (odds ratio, 4.76).ConclusionsPatients with hematologic malignancies complicated by pneumonia during neutropenia are at increased risk for ARDS during neutropenia recovery.
Clinical and Experimental Pharmacology and Physiology | 2010
Jin Woo Kim; Chin Kook Rhee; Tae-Jung Kim; Yong Hyun Kim; Sang Haak Lee; Hyung Kyu Yoon; Seok Chan Kim; Sook Young Lee; Soon Suk Kwon; Kwan Hyung Kim; Young Kyoon Kim
1. Pravastatin is best known for its antilipidemic action. Recent studies have shown that statins have immunomodulatory and anti‐inflammatory effects. The present study aimed to determine whether or not pravastatin can attenuate acute lung injury and fibrosis in a mouse model.
Experimental Lung Research | 2009
Jeong Sup Song; Chun Mi Kang; Chin Kook Rhee; Hyung Kyu Yoon; Young Kyoon Kim; Hwa Sik Moon; Sung Hak Park
Alveolar epithelial cell injury and apoptosis is consistent findings in human idiopathic pulmonary fibrosis (IPF). Epithelial cell apoptosis is known to be induced by leukocyte elastase in vitro. The authors hypothesized that synthetic neutrophil elastase inhibitor, sivelestat (ONO-5046), can inhibit the bleomycin-induced pulmonary fibrosis in rats by blocking the apoptotic pathways in epithelial cells. Adult rats were injected with intratracheal bleomycin. Sivelestat was given for 13 days intraperitoneally after bleomycin treatments. Similar experiments were carried out in which A549 cells, a human alveolar type II epithelial cell line, were treated with bleomycin or neutrophil elastase. In rats, sivelestat decreased neutrophil counts and the cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage (BAL) fluid of bleomycin-treated rats. Sivelestat also decreased the bleomycin-induced lung inflammatory cell apoptosis by decreasing caspase-3 and -9 activities. In A549 cells, sivelestat decreased the elastase-induced epithelial cell apoptosis but not the bleomycin-induced epithelial cell apoptosis. Similarly, sivelestat inhibited the elastase-induced cell death but not the bleomycin-induced cell death in MTT assays. Sivelestat also inhibited the elastase-induced caspase-3 and -9 activities and cytochrome c release from the mitochondria but did not inhibit the bleomycin-induced caspase activities in A549 cells. In conclusion, bleomycin caused the lung inflammatory cell apoptosis through the caspase-9 and -3 pathways in rats. Sivelestat inhibited pulmonary fibrosis by blocking these mitochondria-mediated apoptotic pathways in bleomycin-treated rats and in elastase-treated A549 cells. These findings suggest that sivelestat can suppress the bleomycin-induced pulmonary fibrosis by blocking neutrophil chemotaxis and by inhibiting the neutrophil elastase–induced lung cell apoptosis in rats.
Lung Cancer | 2015
Chang Dong Yeo; Ki Hoon Park; Chan Kwon Park; Sang Haak Lee; Seung Joon Kim; Hyung Kyu Yoon; Youn Soo Lee; Eun Jung Lee; Kyo Young Lee; Tae-Jung Kim
OBJECTIVES Expression of insulin-like growth factor 1 receptor (IGF-1R) in non-small cell lung cancer (NSCLC) is associated with poor prognosis. The IGF-1R pathway activates downstream targets that bypass dependency in signals from the epidermal growth factor receptor (EGFR), which mediates resistance to EGFR tyrosine kinase inhibitors (TKIs). The aim of the present study was to determine the predictive role of IGF-1R expression in the response to EGFR-TKIs of NSCLC patients harboring activating EGFR mutations. MATERIALS AND METHODS We retrospectively studied 62 NSCLC patients who had activating EGFR mutations and received TKIs. Protein expression of IGF-1R, vascular endothelial growth factor (VEGF), and human epidermal growth factor receptor 2 (HER2) were measured by immunohistochemical staining. Univariate and multivariate analyses were performed to identify predictive factors associated with the responses to EGFR-TKIs. The relationship of progression-free survival (PFS) with IGF-1R expression and the presence of diabetes mellitus (DM) were examined. RESULTS Of 62 EGFR mutation positive patients, 26 expressed IGF-1R, and 13 had DM. In the multivariate analysis, young age, squamous cell carcinoma, and IGF-1R expression were independently associated with a shorter PFS after treatment with EGFR-TKIs. Patients expressing IGF-1R showed a significantly shorter PFS in response to EGFR-TKIs compared with those lacking IGF-1R expression (9.1 vs. 20.1 months, p=0.005). The 13 patients with DM were more likely to express IGF-1R (p=0.001) and had shorter PFS times when treated with first-line EGFR-TKIs (7.6 vs. 18.6 months, p=0.005), compared with those without DM. CONCLUSION IGF-1R expression was a negative predictive factor for a response to EGFR-TKIs in NSCLC patients harboring activating EGFR mutations. Moreover, patients with DM highly expressed IGF-1R in tumor tissues, which was associated with a poor response to first-line TKI therapy. Further studies aimed at overcoming EGFR-TKI resistance will need to also address IGF-1R pathways.
Experimental and Molecular Medicine | 2011
Jeong Sup Song; Chun Mi Kang; Chan Kwon Park; Hyung Kyu Yoon; Sook Young Lee; Joong Hyun Ahn; Hwa-Sik Moon
Idiopathic pulmonary fibrosis (IPF) is a lethal parenchymal lung disease characterized by myofibroblast proliferation. Alveolar epithelial cells (AECs) are thought to produce myofibroblasts through the epithelial to mesenchymal transition (EMT). Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation is associated with renal fibrosis during diabetes and liver fibrosis. RAGE is expressed at low basal levels in most adult tissues except the lung. In this study, we evaluated the interaction of ligand advanced glycation end products (AGE) with RAGE during the epithelial to myofibroblast transition in rat AECs. Our results indicate that AGE inhibited the TGF-β-dependent alveolar EMT by increasing Smad7 expression, and that the effect was abolished by RAGE siRNA treatment. Thus, the induction of Smad7 by the AGE-RAGE interaction limits the development of pulmonary fibrosis by inhibiting TGF-β-dependent signaling in AECs.
Experimental Lung Research | 2013
Jeong Sup Song; Chun Mi Kang; Chan Kwon Park; Hyung Kyu Yoon
ABSTRACT Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts. The origins of myofibroblasts are resident fibroblasts, fibrocytes, and epithelial-mesenchymal transition (EMT). We investigated the effects of thrombin, an important mediator of interstitial lung fibrosis, on EMT in A549 human alveolar epithelial cells. We show that thrombin induced EMT and collagen I secretion through the activation of PAR-1, and PKC and ERK1/2 phosphorylation in A549 cells. These effects were largely prevented by a specific PAR-1 antagonist, short interfering RNA (siRNA) directed against PAR-1, or specific PKCα/β, δ, and ε inhibitors. These data indicated that interaction with thrombin and alveolar epithelial cells might directly contribute to the pathogenesis of pulmonary fibrosis through EMT. Targeting PAR-1 on the pulmonary epithelium or specific inhibitors to PKCα/β, δ, and ε might stop the fibrotic processes in human idiopathic pulmonary fibrosis by preventing thrombin-induced EMT.