Hyung-Taeg Cho
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyung-Taeg Cho.
The Plant Cell | 2002
Hyung-Taeg Cho; Daniel J. Cosgrove
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.
Nature Genetics | 2014
Seungill Kim; Minkyu Park; Seon-In Yeom; Yong Min Kim; Je Min Lee; Hyun Ah Lee; Eunyoung Seo; Jae Young Choi; Kyeongchae Cheong; Ki-Tae Kim; Kyongyong Jung; Gir Won Lee; Sang Keun Oh; Chungyun Bae; Saet Byul Kim; Hye Young Lee; Shin Young Kim; Myung Shin Kim; Byoung Cheorl Kang; Yeong Deuk Jo; Hee Bum Yang; Hee Jin Jeong; Won-Hee Kang; Jin Kyung Kwon; Chanseok Shin; Jae Yun Lim; June Hyun Park; Jin Hoe Huh; June Sik Kim; Byung-Dong Kim
Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.
The Plant Cell | 1997
Hyung-Taeg Cho; Hans Kende
Expansins are a family of proteins that catalyze long-term extension of isolated cell walls. Previously, two expansin proteins have been isolated from internodes of deepwater rice, and three rice expansin genes, Os-EXP1, Os-EXP2, and Os-EXP3, have been identified. We report here on the identification of a fourth rice expansin gene, Os-EXP4, and on the expression pattern of the rice expansin gene family in deepwater rice. Rice expansin genes show organ-specific differential expression in the coleoptile, root, leaf, and internode. In these organs, there is increased expression of Os-EXP1, Os-EXP3, and Os-EXP4 in developmental regions where elongation occurs. This pattern of gene expression is also correlated with acid-induced in vitro cell wall extensibility. Submergence and treatment with gibberellin, both of which promote rapid internodal elongation, induced accumulation of Os-EXP4 mRNA before the rate of growth started to increase. Our results indicate that the expression of expansin genes in deepwater rice is differentially regulated by developmental, hormonal, and environmental signals and is correlated with cell elongation.
The Plant Cell | 2003
Dongsu Choi; Yi Lee; Hyung-Taeg Cho; Hans Kende
To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening.
The Plant Cell | 2007
Misuk Cho; Sang Ho Lee; Hyung-Taeg Cho
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activity in plant cells. Root hair cell–specific overexpression of PGP4 (PGP4ox) and known auxin efflux transporters, such as PGP1, PGP19, and PIN-FORMEDs, decreased root hair elongation, whereas overexpression of the influx transporter AUXIN-RESISTANT1 enhanced root hair length. PGP4ox-mediated root hair shortening was rescued by the application of auxin or an auxin efflux inhibitor. These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation. PGP4ox in tobacco suspension cells also increased auxin efflux. PGP4 proteins were targeted to the plasma membrane of Arabidopsis root hair cells and tobacco cells without any clear subcellular polarity. Brefeldin A partially interfered with the trafficking of PGP4 reversibly, and this was rescued by pretreatment with auxin. These results suggest that PGP4 is an auxin efflux transporter in plants and that its trafficking to the plasma membrane involves both BFA-sensitive and -insensitive pathways.
Plant Molecular Biology | 2004
Hans Kende; Kent J. Bradford; David A. Brummell; Hyung-Taeg Cho; Daniel J. Cosgrove; Andrew Fleming; Chris Gehring; Yi Lee; Simon J. McQueen-Mason; Jocelyn K. C. Rose; Laurentius A. C. J. Voesenek
Hans Kende*, Kent J. Bradford, David A. Brummell, Hyung-Taeg Cho, Daniel J. Cosgrove, Andrew J. Fleming, Chris Gehring, Yi Lee, Simon McQueen-Mason, Jocelyn K.C. Rose and Laurentius A.C.J. Voesenek MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA (*author for correspondence; e-mail [email protected]); Seed Biotechnology Center, University of California, Davis CA 95616, USA; Crop and Food Research, Private Bag 11600, Palmerston North, 5301, New Zealand; School of Biosciences and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; University of the Western Cape, Department of Biotechnology, Private Bag X17, Bellville 7535, South Africa; Department of Tobacco Science, Chungbuk National University, 48 Gaesin-dong Hungduk-ku, Chongju 361-763, Republic of Korea; Biology Department, University of York, PO Box 373, York, YO10 5YW, UK; Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA; Plant Ecophysiology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
Plant Physiology | 2009
Su-Kyung Won; Yong-Ju Lee; Ha-Yeon Lee; Yoon-Kyung Heo; Misuk Cho; Hyung-Taeg Cho
Understanding the cellular differentiation of multicellular organisms requires the characterization of genes whose expression is modulated in a cell type-specific manner. The Arabidopsis (Arabidopsis thaliana) root hair cell is one model for studying cellular differentiation. In this study, root hair cell-specific genes were screened by a series of in silico and experimental filtration procedures. This process included genome-wide screening for genes with a root hair-specific cis-element in their promoters, filtering root-specific genes from the root hair-specific cis-element-containing genes, further filtering of genes that were suppressed in root hair-defective plant lines, and experimental confirmation by promoter assay. These procedures revealed 19 root hair-specific genes, including many protein kinases and cell wall-related genes, most of which have not been characterized thus far. Functional analyses of these root hair-specific genes with loss-of-function mutants and overexpressing transformants revealed that they play roles in hair growth and morphogenesis. This study demonstrates that a defined cis-element can serve as a filter to screen certain cell type-specific genes and implicates many new root hair-specific genes in root hair development.
The Plant Cell | 2006
Dong-Wook Kim; Sang Ho Lee; Sang-Bong Choi; Su-Kyung Won; Yoon-Kyung Heo; Misuk Cho; Youn-Il Park; Hyung-Taeg Cho
Vascular plants develop distinctive root hair distribution patterns in the root epidermis, depending on the taxon. The three patterns, random (Type 1), asymmetrical cell division (Type 2), and positionally cued (Type 3), are controlled by different upstream fate-determining factors that mediate expression of root hair cell-specific genes for hair morphogenesis. Here, we address whether these root hair genes possess a common transcriptional regulatory module (cis-element) determining cell-type specificity despite differences in the final root hair pattern. We identified Arabidopsis thaliana expansinA7 (At EXPA7) orthologous (and paralogous) genes from diverse angiosperm species with different hair distribution patterns. The promoters of these genes contain conserved root hair–specific cis-elements (RHEs) that were functionally verified in the Type-3 Arabidopsis root. The promoter of At EXPA7 (Type-3 pattern) also showed hair cell–specific expression in the Type 2 rice (Oryza sativa) root. Root hair–specific genes other than EXPAs also carry functionally homologous RHEs in their promoters. The RHE core consensus was established by a multiple alignment of functionally characterized RHEs from different species and by high-resolution analysis of At EXPA7 RHE1. Our results suggest that this regulatory module of root hair–specific genes has been conserved across angiosperms despite the divergence of upstream fate-determining machinery.
Plant Physiology | 1997
Hyung-Taeg Cho; Hans Kende
Cell walls of deepwater rice (Oryza sativa L.) internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansin. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansin antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansins were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansin of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansin is identical to that deduced from the rice expansin cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansin matches that deduced from the rice expansin cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansins occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.
Plant Physiology | 2008
Yuree Lee; Gwangbae Bak; Yunjung Choi; Wen-I Chuang; Hyung-Taeg Cho; Youngsook Lee
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:β-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.