Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunglae Lee is active.

Publication


Featured researches published by Hyunglae Lee.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2015

Time-Varying Ankle Mechanical Impedance During Human Locomotion

Hyunglae Lee; Neville Hogan

In human locomotion, we continuously modulate joint mechanical impedance of the lower limb (hip, knee, and ankle) either voluntarily or reflexively to accommodate environmental changes and maintain stable interaction. Ankle mechanical impedance plays a pivotal role at the interface between the neuro-mechanical system and the physical world. This paper reports, for the first time, a characterization of human ankle mechanical impedance in two degrees-of-freedom simultaneously as it varies with time during walking. Ensemble-based linear time-varying system identification methods implemented with a wearable ankle robot, Anklebot, enabled reliable estimation of ankle mechanical impedance from the pre-swing phase through the entire swing phase to the early-stance phase. This included heel-strike and toe-off, key events in the transition from the swing to stance phase or vice versa. Time-varying ankle mechanical impedance was accurately approximated by a second order model consisting of inertia, viscosity, and stiffness in both inversion-eversion and dorsiflexion-plantarflexion directions, as observed in our previous steady-state dynamic studies. We found that viscosity and stiffness of the ankle significantly decreased at the end of the stance phase before toe-off, remained relatively constant across the swing phase, and increased around heel-strike. Closer investigation around heel-strike revealed that viscosity and stiffness in both planes increased before heel-strike occurred. This finding is important evidence of “pretuning” by the central nervous system. In addition, viscosity and stiffness were greater in the sagittal plane than in the frontal plane across all subgait phases, except the early stance phase. Comparison with previous studies and implications for clinical study of neurologically impaired patients are provided.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2014

Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

Hyunglae Lee; Hermano Igo Krebs; Neville Hogan

Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.


international conference on robotics and automation | 2013

Investigation of human ankle mechanical impedance during locomotion using a wearable ankle robot

Hyunglae Lee; Neville Hogan

This paper presents a new method to characterize human ankle mechanical impedance during treadmill locomotion with a wearable ankle robot, Anklebot. An ensemble-based system identification method was used to investigate the time-varying behavior of ankle mechanical impedance in two degrees of freedom, both in the sagittal and frontal planes. We also provide solutions to overcome the limitations of original ensemble-based methods in practical applications. A pilot study of three human subjects demonstrated the efficacy of our approach. Analysis results showed clear time-varying behaviors of ankle impedance across the gait cycle except in the mid- and terminal-stance phases, and these behaviors were accurately approximated as a second-order model with stiffness, damping, and inertia components. Interestingly, all three subjects showed similar time-varying behaviors in both degrees of freedom: impedance increased around heel-strike and decreased significantly at the end of the stance phase.


ASME 2010 Dynamic Systems and Control Conference, DSCC2010 | 2010

Stochastic Estimation of the Multi-Variable Mechanical Impedance of the Human Ankle With Active Muscles

Mohammad Rastgaar; Patrick Ho; Hyunglae Lee; Hermano Igo Krebs; Neville Hogan

This article compares stochastic estimates of multi-variable human ankle mechanical impedance when ankle muscles were fully relaxed, actively generating ankle torque or co-contracting antagonistically. We employed Anklebot, a rehabilitation robot for the ankle, to provide torque perturbations. Muscle activation levels were monitored electromyographically and these EMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the Dorsi-Plantar flexion (DP) and Inversion-Eversion (IE) directions were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated for the Anklebot alone and when it was worn by a human subject, the difference between these functions providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in both DP and IE directions.Copyright


ASME 2010 Dynamic Systems and Control Conference, DSCC2010 | 2010

Quantitative Characterization of Steady-State Ankle Impedance With Muscle Activation

Hyunglae Lee; Patrick Ho; Mohammad Rastgaar; Hermano Igo Krebs; Neville Hogan

Characterization of multi-variable ankle mechanical impedance is crucial to understanding how the ankle supports lower-extremity function during interaction with the environment. This paper reports quantification of steady-state ankle impedance when muscles were active. Vector field approximation of repetitive measurements of the torque-angle relation in two degrees of freedom (inversion/eversion and dorsiflexion/plantarflexion) enabled assessment of spring-like and non-spring-like components. Experimental results of eight human subjects showed direction-dependent ankle impedance with greater magnitude than when muscles were relaxed. In addition, vector field analysis demonstrated a non-spring-like behavior when muscles were active, although this phenomenon was subtle in the unimpaired young subjects we studied.


IEEE Journal of Translational Engineering in Health and Medicine | 2016

Summary of Human Ankle Mechanical Impedance During Walking

Hyunglae Lee; Elliott J. Rouse; Hermano Igo Krebs

The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane.The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane.


ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 | 2012

Linear time-varying identification of ankle mechanical impedance during human walking

Hyunglae Lee; Hermano Igo Krebs; Neville Hogan

This paper presents a new method to investigate the multivariable time-varying behavior of the ankle during human walking, and provides the first experimental results from treadmill walking. A wearable ankle robot with an ensemble-based linear time-varying system identification method enabled identification of transient ankle mechanical impedance in 2 degrees of freedom, both in the sagittal and frontal planes. Several important issues of the ensemble-based identification method in practical measurements are discussed, especially a strategy to solve the limitation of the method which assumes that the system undergoes the same time-varying behavior on every stride. The suggested method was successfully applied to 15 minutes of human walking on a treadmill. Experiments with 10 young healthy subjects showed clear time-varying behavior of ankle impedance across the gait cycle, except the mid-stance phase. Interestingly, most subjects increased ankle impedance just before heel strike in both degrees of freedom. Interpretation of impedance changes was consistent with analysis of electromyographic signals from major muscles related to ankle movements.Copyright


2009 ASME Dynamic Systems and Control Conference, DSCC2009 | 2009

Directional Variation of Active and Passive Ankle Static Impedance

Patrick Ho; Hyunglae Lee; Hermano Igo Krebs; Neville Hogan

Though ankle mechanical impedance plays an important role in posture and locomotion, it has been inadequately characterized. Unlike previous studies, which confined themselves to measurements along the primary axes of the ankle in an isolated fashion, the study reported here characterized the static component of ankle impedance in two degrees of freedom. In addition, the effect of active muscle contraction on ankle static impedance was measured. We found that ankle static impedance varied significantly with direction under passive conditions. We further observed that, while muscle contraction increased the magnitude of ankle static impedance, its directional variation was essentially unchanged.Copyright


IEEE Transactions on Biomedical Engineering | 2014

Position-Dependent Characterization of Passive Wrist Stiffness

Autumn L. Pando; Hyunglae Lee; Will B. Drake; Neville Hogan; Steven K. Charles

Because the dynamics of wrist rotations are dominated by stiffness, understanding wrist rotations requires a thorough characterization of wrist stiffness in multiple degrees of freedom. The only prior measurement of multivariable wrist stiffness was confined to approximately one-seventh of the wrist range of motion (ROM). Here, we present a precise nonlinear characterization of passive wrist joint stiffness over a range three times greater, which covers approximately 70% of the functional ROM of the wrist. We measured the torque-displacement vector field in 24 directions and fit the data using thin-plate spline smoothing optimized with generalized cross validation. To assess anisotropy and nonlinearity, we subsequently derived several different approximations of the stiffness due to this multivariable vector field. The directional variation of stiffness was more pronounced than reported previously. A linear approximation (obtained by multiple linear regression over the entire field) was significantly more anisotropic (eigenvalue ratio of 2.69 ± 0.52 versus 1.58 ± 0.39; p <; 0.001) though less misaligned with the anatomical wrist axes (12.1 ± 4.6° versus 21.2 ± 9.2°; p <; 0.001). We also found that stiffness over this range exhibited considerable nonlinearity-the error associated with a linear approximation was 20-30%. The nonlinear characterization over this greater range confirmed significantly greater stiffness in radial deviation compared to ulnar deviation. This study provides a characterization of passive wrist stiffness better suited to investigations of natural wrist rotations, which cover much of the wrists ROM. It also provides a baseline for the study of neurological and/or orthopedic disorders that result in abnormal wrist stiffness.


2009 ASME Dynamic Systems and Control Conference, DSCC2009 | 2009

The Multi-Variable Torque-Displacement Relation at the Ankle

Hyunglae Lee; Patrick Ho; Hermano Igo Krebs; Neville Hogan

In this paper, we report measurements of the multi-variable torque-displacement relation at the ankle. The passive behavior of the ankle in two degrees of freedom (inversion-eversion and dorsiflexion-plantarflexion) was quantified using the Anklebot. The measured torque-displacement relationship was represented as a vector field using thin-plate spline smoothing with generalized cross validation. Analysis of the experimental results showed that, when maximally relaxed, the ankle behaved like a mechanical spring. However, if muscles were active, the torque-displacement relation was not spring-like. Implications for the contribution of neural feedback to ankle impedance are discussed.Copyright

Collaboration


Dive into the Hyunglae Lee's collaboration.

Top Co-Authors

Avatar

Neville Hogan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hermano Igo Krebs

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Patrick Ho

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mohammad Rastgaar

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Justin Hunt

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Varun Nalam

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Albert C. Lo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Daniel Klenk

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge