Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyungu Kang is active.

Publication


Featured researches published by Hyungu Kang.


The Journal of Nuclear Medicine | 2010

A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer

Do Won Hwang; Hae Young Ko; Jung Hwan Lee; Hyungu Kang; Sung Ho Ryu; In Chan Song; Dong Soo Lee; Soonhag Kim

The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. Methods: A cobalt–ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with 67Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo 67Ga radionuclide imaging and MRI were performed using a γ-camera and a 1.5-T MR imager, respectively. Results: TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)–treated C6 cells. The rhodamine fluorescence intensity and 67Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The 67Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. Conclusion: We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.


Biopolymers | 2008

Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA

Ge Jiang; Kitae Park; Jiseok Kim; Ki Su Kim; Eun Ju Oh; Hyungu Kang; Su-Eun Han; Yu-Kyoung Oh; Tae Gwan Park; Sei Kwang Hahn

A novel target specific small interfering RNA (siRNA) delivery system was successfully developed using polyethyleneimine (PEI)-hyaluronic acid (HA) conjugate. Anti-PGL3-Luc siRNA was used as a model system suppressing the PGL3-Luc gene expression. The siRNA/PEI-HA complex with an average size of ca. 21 nm appeared to be formed by electrostatic interaction between the negatively charged siRNA and the positively charged PEI of PEI-HA conjugate. The cytotoxicity of siRNA/PEI-HA complex to B16F1 cells was lower than that of siRNA/PEI complex according to the MTT assay. When B16F1 and HEK-293 cells were treated with fluorescein isothiocyanate (FITC) labeled siRNA/PEI-HA complex, B16F1 cells, with a lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), showed higher green fluorescent intensity than HEK-293 cells because of the HA receptor mediated endocytosis of the complex. Accordingly, the PGL3-Luc gene silencing of anti-PGL3-Luc siRNA/PEI-HA complex was more efficient in B16F1 cells than in HEK-293 cells. In addition, the inhibited PGL3-Luc gene silencing effect in the presence of free HA in the transfection medium revealed that siRNA/HA-PEI complex was selectively taken up to B16F1 cells via HA receptor mediated endocytosis. All these results demonstrated that the intracellular delivery of anti-PGL3-Luc siRNA/PEI-HA complex could be facilitated by the HA receptor mediated endocytosis.


International Journal of Pharmaceutics | 2007

Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA

Su-Eun Han; Hyungu Kang; Ga Yong Shim; Min Sung Suh; Sun-Jae Kim; Jin-Seok Kim; Yu-Kyoung Oh

Most cationic liposomes used for gene delivery suffer from reduced transfection efficiency in the presence of serum. In this study, we report serum-enhanced delivery efficiency of siRNA via the use of newly synthesized liposomes that contain cationic lipids. Two cholesterol derivatives, cholesteryloxypropan-1-amine (COPA) and cholesteryl-2-aminoethylcarbamate (CAEC), were synthesized. A fluorescein label was then used to visualize cellular uptake of small interfering RNA (siRNA) via COPA or CAEC-based liposomes. The presence of serum had different effects on the cellular delivery of siRNA when siRNA was complexed to different cationic liposomes. CAEC-based liposomes showed significantly reduced cellular delivery of siRNA in serum-containing media as compared to serum-free media. Conversely, COPA-based liposomes (COPA-L) provided serum-enhanced delivery of siRNA in Hepa1-6, A549, and Hela cell lines. Following delivery of the oncogene survivin-specific siRNA, COPA-L reduced the mRNA expression levels of the target gene more efficiently than did Lipofectamine 2000. The delivery of green fluorescent protein-specific siRNA with COPA-L reduced the expression of green fluorescent protein in 293T stable cell lines. The apoptosis of Hepa1-6 significantly increased by delivery of survivin-specific siRNA by COPA-L. Additionally, Hepa1-6, A549, and Hela cells were >80% viable after treatment with COPA-L. These results suggest that the newly synthesized cholesterol derivative, COPA-L, could be further developed as a serum-enhanced delivery system of siRNA.


Small | 2009

In vitro derby imaging of cancer biomarkers using quantum dots.

Mee Hyang Ko; Soonhag Kim; Won Jun Kang; Jung Hwan Lee; Hyungu Kang; Sung Hwan Moon; Do Won Hwang; Hae Young Ko; Dong Soo Lee

Semiconductor quantum dots (QDs), which have broad absorption with narrow emission spectra, are useful for multiplex imaging. Here, fluorescence derby imaging using dual color QDs conjugated by the AS1411 aptamer (targeting nucleolin) and the arginine-glycine-aspartic acid (targeting the integrin alpha(v)beta(3)) in cancer cells is reported. Simultaneous fluorescence imaging of cellular distribution of nucleolin and integrin alpha(v)beta(3) using QDs enables easy monitoring of separate targets in the cancer cells and the normal healthy cells. These results suggest the feasibility of a concurrent visualization of QD-based multiple cancer biomarkers using small molecules such as aptamer or peptide ligands.


Biopolymers | 2008

In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots

Jiseok Kim; Ki Su Kim; Ge Jiang; Hyungu Kang; Sungjee Kim; Byung-Soo Kim; Moon Hyang Park; Sei Kwang Hahn

The effect of chemical modification of hyaluronic acid (HA) on its distribution throughout the body was successfully visualized in nude mice through real-time bioimaging using quantum dots (QDots). Adipic acid dihydrazide modified HA (HA-ADH) was synthesized and conjugated with QDots having carboxyl terminal ligands activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. The formation of HA-QDot conjugates could be confirmed by gel permeation chromatography, fluorometry, transmission electron microscopy, and zeta-size analysis. According to the real-time bioimaging of HA-QDot conjugates after subcutaneous injection to nude mice, the fluorescence of HA-QDot conjugates with a near infrared wavelength of 800 nm could be detected up to 2 months, whereas that with an emission wavelength of 655 nm disappeared almost completely within 5 days. The results can be ascribed to the fact that near-infrared light has a high penetration depth of about 5-6 cm in the body compared to that of about 7-10 mm for visible light. Thereby, using QDots with a near-infrared emission wavelength of 800 nm, the distribution of HA-QDot conjugates throughout the body was bioimaged in real-time after their tail-vein injection into nude mice. HA-QDot conjugates with 35 mol% ADH content maintaining enough binding sites for HA receptors were mainly accumulated in the liver, while those with 68 mol% ADH content losing much of HA characteristics were evenly distributed to the tissues in the body. The results are well matched with the fact that HA receptors are abundantly present in the liver with a high specificity to HA molecules.


Journal of Drug Targeting | 2009

Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides

Su-Eun Han; Hyungu Kang; Ga Yong Shim; Sun-Jae Kim; Han-Gon Choi; Jiseok Kim; Sei Kwang Hahn; Yu-Kyoung Oh

In this study, we tested the use of cationic polymer derivatives of biocompatible hyaluronic acid (HA) as a delivery system of siRNA and antisense oligonucleotides. HA was modified with cationic polymer polyethylenimine (PEI). When compared with PEI alone, cationic PEI derivatives of HA (HA–PEI) provided increased cellular delivery of Small interfering RNA (siRNA) in B16F1, A549, HeLa, and Hep3B tumor cells. Indeed, more than 95% of the cells were positive for siRNA following its delivery with HA–PEI. A survivin-specific siRNA that was delivered using HA–PEI potently reduced the mRNA expression levels of the target gene in all of the cell lines. By contrast, survivin-specific siRNA delivered by PEI alone did not induce a significant reduction in mRNA levels. In green fluorescent protein (GFP)-expressing 293 T cells, a loss of GFP expression was evident in the cells that had been treated with GFP-specific siRNA and HA–PEI complex. The inhibition of target gene expression by antisense oligonucleotide G3139 was also enhanced after delivery with HA–PEI. Moreover, HA–PEI displayed lower cytotoxicity than PEI alone. These results suggest that HA–PEI could be further developed as biocompatible delivery systems of siRNA and antisense oligonucleotides for enhanced cellular uptake and inhibition of target gene expression.


BioMed Research International | 2010

Bioimaging of Nucleolin Aptamer-Containing 5-(N-benzylcarboxyamide)-2′-deoxyuridine More Capable of Specific Binding to Targets in Cancer Cells

Kyue Yim Lee; Hyungu Kang; Sung Ho Ryu; Dong Soo Lee; Jung Hwan Lee; Soonhag Kim

Chemically modified nucleotides have been developed and applied into SELEX procedure to find a novel type of aptamers to fit with targets of interest. In this study, we directly performed chemical modification of 5-(N-benzylcarboxyamide)-2′-deoxyuridine (called 5-BzdU) in the AS1411 aptamer, which binds to the nucleolin protein expressed in cancer cells. Forty-seven compounds of AS1411-containing Cy3-labeled 5-BzdU (called Cy3-(5-BzdU)-modified-AS1411) were synthesized by randomly substituting thymidines one to twelve in AS1411 with Cy3-labeled 5-BzdU. Both statistically quantified fluorescence measurements and confocal imaging analysis demonstrated at least three potential compounds of interest: number 12, 29 and 41 that significantly increased the targeting affinity to cancer cells but no significant activity from normal healthy cells. These results suggest that the position and number of substituents in AS1411 are critical parameters to improve the aptamer function. In this study, we demonstrated that chemical modification of the existing aptamers enhanced the binding and targeting affinity to targets of interest without additional SELEX procedures.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis of novel cholesterol-based cationic lipids for gene delivery

Bieong-Kil Kim; Kyung-Oh Doh; Joo Hyeung Nam; Hyungu Kang; Jong-Gu Park; Ik-Jae Moon; Young-Bae Seu

The new cholesterol-based cationic lipids B, C, and D with an ether linked spacer were synthesized by using aminopropyl chain extension with acrylonitrile. The cholesterol-based cationic lipid A with carbamoyl linkage were also synthesized in order to compare the difference in transfection efficiency of the two linkage types. To this end, GFP expression of these cationic lipids was confirmed respectively.


International Journal of Molecular Sciences | 2014

Efficient Delivery of Plasmid DNA Using Cholesterol-Based Cationic Lipids Containing Polyamines and Ether Linkages

Bieong-Kil Kim; Young-Bae Seu; Yun-Ui Bae; Tae-Won Kwak; Hyungu Kang; Ik-Jae Moon; Guen-Bae Hwang; So-Young Park; Kyung-Oh Doh

Cationic liposomes are broadly used as non-viral vectors to deliver genetic materials that can be used to treat various diseases including cancer. To circumvent problems associated with cationic liposome-mediated delivery systems such as low transfection efficiency and serum-induced inhibition, cholesterol-based cationic lipids have been synthesized that resist the effects of serum. The introduction of an ether-type linkage and extension of the aminopropyl head group on the cholesterol backbone increased the transfection efficiency and DNA binding affinity compared to a carbamoyl-type linkage and a mono aminopropyl head group, respectively. Under optimal conditions, each liposome formulation showed higher transfection efficiency in AGS and Huh-7 cells than commercially available cationic liposomes, particularly in the presence of serum. The following molecular structures were found to have a positive effect on transfection properties: (i) extended aminopropyl head groups for a strong binding affinity to plasmid DNA; (ii) an ether linkage that favors electrostatic binding to plasmid DNA; and (iii) a cholesterol backbone for serum resistance.


Oncogene | 2005

Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR

Arun K Bajpai; Jeong-Hoh Park; Ik-Jae Moon; Hyungu Kang; Yun-Han Lee; Kyung-Oh Doh; Seong-Il Suh; Byeong-Churl Chang; Jong-Gu Park

Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70–80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

Collaboration


Dive into the Hyungu Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Ho Ryu

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jung Hwan Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hye-Jung Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ik-Jae Moon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Kyoung Oh

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Soo Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eun-Jung Jang

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge