Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunjhung Jhun is active.

Publication


Featured researches published by Hyunjhung Jhun.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Paradoxical effects of constitutive human IL-32γ in transgenic mice during experimental colitis

Jida Choi; Suyoung Bae; Jaewoo Hong; Soyoon Ryoo; Hyunjhung Jhun; Kwangwon Hong; Do-Young Yoon; Siyoung Lee; Erk Her; Wonhyuk Choi; Jeong Hwan Kim; Tania Azam; Charles A. Dinarello; Soo-Hyun Kim

Inflammatory cytokines mediate inflammatory bowel diseases (IBDs) and cytokine blocking therapies often ameliorate the disease severity. IL-32 affects inflammation by increasing the production of IL-1, TNFα, and several chemokines. Here, we investigated the role of IL-32 in intestinal inflammation by generating a transgenic (TG) mouse expressing human IL-32γ (IL-32γ TG). Although IL-32γ TG mice are healthy, constitutive serum and colonic tissue levels of TNFα are elevated. Compared with wild-type (WT) mice, IL-32γ TG mice exhibited a modestly exacerbated acute inflammation early following the initiation of dextran sodium sulfate (DSS)-induced colitis. However, after 6 d, there was less colonic inflammation, reduced tissue loss, and improved survival rate compared with WT mice. Associated with attenuated tissue damage, colonic levels of TNFα and IL-6 were significantly reduced in the IL-32γ TG mice whereas IL-10 was elevated. Cultured colon explants from IL-32γ TG mice secreted higher levels of IL-10 compared with WT mice and lower levels of TNFα and IL-6. Constitutive levels of IL-32γ itself in colonic tissues were significantly lower following DSS colitis. Although the highest level of serum IL-32γ occurred on day 3 of colitis, IL-32 was below constitutive levels on day 9. The ability of IL-32γ to increase constitutive IL-10 likely reduces TNFα, IL-6, and IL-32 itself accounting for less inflammation. In humans with ulcerative colitis (UC), serum IL-32 is elevated and colonic biopsies contain IL-32 in inflamed tissues but not in uninvolved tissues. Thus IL-32γ emerges as an example of how innate inflammation worsens as well as protects intestinal integrity.


Journal of Biological Chemistry | 2011

Identification of Constitutively Active Interleukin 33 (IL-33) Splice Variant

Jaewoo Hong; Suyoung Bae; Hyunjhung Jhun; Siyoung Lee; Jida Choi; Taebong Kang; Areum Kwak; Kwangwon Hong; Eunsom Kim; Seunghyun Jo; Soo-Hyun Kim

IL-33/IL-1F11 is a new member of the IL-1 family ligand and provokes T helper-type immune responses. IL-33 is the ligand of ST2 and IL-1 receptor accessory protein (IL-1RAcP) that triggers nuclear factor-κ light chain enhancer of activated B cells (NF-κB) and MAPK signaling. We discovered a novel short splice variant of IL-33 that was termed spIL-33. The new spIL-33 lacks exon 3 containing a proposed caspase-1 cleavage site. We isolated spIL-33 cDNA from the Huh7 human hepatocarcinoma cell line and expressed the recombinant spIL-33 protein in Escherichia coli. The recombinant spIL-33 and pro-IL-33 were not cleaved by caspase-1, unlike IL-18 (IL-1F4). The recombinant spIL-33 was constitutively active, and spIL-33-induced inflammatory cytokine production was caspase-1-independent in HMC-1 and Raw 264.7 cells. The recombinant spIL-33 induced the phosphorylation of IL-1 receptor-associated kinase (IRAK1), NF-κB, p38 MAPK, p44/42 MAPK, and JNK in a time- and dose-dependent manner. Anti-ST2 monoclonal antibody specifically blocked the spIL-33-induced cytokine production. In this study, we identified and characterized a new IL-33 splice variant, which was a constitutively active IL-33 isoform. The existence of constitutively active spIL-33 suggests that the biological activity of IL-33 could be triggered by diverse stimulations during immune responses. Further investigation of the spIL-33 expression pattern may contribute to understanding the involvement of IL-33 in inflammatory disorders.


Journal of Biological Chemistry | 2012

Contradictory Functions (Activation/Termination) of Neutrophil Proteinase 3 Enzyme (PR3) in Interleukin-33 Biological Activity

Suyoung Bae; Taebong Kang; Jaewoo Hong; Siyoung Lee; Jida Choi; Hyunjhung Jhun; Areum Kwak; Kwangwon Hong; Eunsom Kim; Seunghyun Jo; Soo-Hyun Kim

Background: The maturation process of IL-33 (IL-1F11) remains unclear. Results: IL-33 ligand affinity column isolates neutrophil proteinase 3. Conclusion: PR3 is an IL-33-processing enzyme. Significance: PR3 has a dual function in IL-33 biological activity. IL-1 family ligand does not possess a typical hydrophobic signal peptide and needs a processing enzyme for maturation. The maturation process of IL-33 (IL-1F11), a new member of the IL-1 family ligand, remains unclear. Precursor IL-33 ligand affinity column isolates neutrophil proteinase 3 (PR3) from human urinary proteins. PR3 is a known IL-1 family ligand-processing enzyme for IL-1β (IL-1F2) and IL-18 (IL-1F4), including other inflammatory cytokines. We investigated PR3 in the maturation process of precursor IL-33 because we isolated urinary PR3 by using the precursor IL-33 ligand affinity column. PR3 converted inactive human and mouse precursor IL-33 proteins to biological active forms; however, the increase of PR3 incubation time abrogated IL-33 activities. Unlike caspase-1-cleaved precursor IL-18, PR3 cut precursor IL-33 and IL-18 at various sites and yielded multibands. The increased incubation period of PR3 abated mature IL-33 in a time-dependent manner. The result is consistent with the decreased bioactivity of IL-33 along with the increased PR3 incubation time. Six different human and mouse recombinant IL-33 proteins were expressed by the predicted consensus amino acid sequence of PR3 cleavage sites and tested for bioactivities. The human IL-33/p1 was highly active, but human IL-33/p2 and p3 proteins were inactive. Our results suggest the dual functions (activation/termination) of PR3 in IL-33 biological activity.


Cytokine | 2012

Characterizing antiviral mechanism of interleukin-32 and a circulating soluble isoform in viral infection

Suyoung Bae; D. W. Kang; Jaewoo Hong; Byung-Hyun Chung; Jida Choi; Hyunjhung Jhun; Kwang-Won Hong; Eunsom Kim; Seunghyun Jo; Siyoung Lee; Sung-Han Kim; Soo Hyun Kim

Interleukin-32 (IL-32) is an inflammatory cytokine, and its activity is associated with various auto-inflammatory disorders as well as infectious pathogens such as Mycobacterium tuberculosis, and viral infections. However, the precise antiviral mechanism of IL-32 remains unclear. We assessed the IL-32 level in the sera of H1N1 influenza A patients and IL-32 level was significantly elevated. Next we examined the antiviral activity of recombinant IL-32γ (rIL-32γ) with WISH cells infected by vesicular stomatitis virus (VSV) but no antiviral activity was observed. Therefore we investigated the supernatant of rIL-32-treated THP-1 cells since this cell line effectively responded to rIL-32γ. The supernatant of rIL-32-treated THP-1 cell possessed an antiviral effect and in addition, an agonistic monoclonal antibody further enhanced a specific antiviral activity of rIL-32γ. The fractionation and mass spectrometer analysis of the THP-1 cell supernatant revealed that the antiviral activity of rIL-32γ is via a THP-1 cell-produced factor, transferrin, rather than the direct effects of rIL-32γ on epithelial cells. We also characterized a secreted soluble IL-32γ protein in serum of IL-32γ transgenic mouse (TG), but not in that of IL-32α TG. The present results suggest that IL-32γ expression and its genetic variation in individual could be an important aspect of viral infections.


Molecular Medicine | 2013

Effect of Recombinant α1-Antitrypsin Fc-Fused (AAT-Fc)Protein on the Inhibition of Inflammatory Cytokine Production and Streptozotocin-Induced Diabetes

Siyoung Lee; Young Min Lee; Kwangwon Hong; Jaewoo Hong; Suyoung Bae; Jida Choi; Hyunjhung Jhun; Areum Kwak; Eunsom Kim; Seunghyun Jo; Charles A. Dinarello; Soo-Hyun Kim

Abstractα1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant region of IgG1 to generate soluble recombinant AAT-Fc protein. The recombinant AAT-Fc protein was produced in Chinese hamster ovary (CHO) cells and purified using mini-protein A affinity chromatography. Recombinant AAT-Fc protein was tested for antiinflammatory function and AAT-Fc sufficiently suppressed tumor necrosis factor (TNF)-α-induced interleukin (IL)-6 in human peripheral blood mononuclear cells (PBMCs) and inhibited cytokine-induced TNFα by different cytokines in mouse macrophage Raw 264.7 cells. However, AAT-Fc failed to suppress lipopolysaccharide-induced cytokine production in both PBMCs and macrophages. In addition, our data showed that AAT-Fc blocks the development of hyperglycemia in a streptozotocin-induced mouse model of diabetes. Interestingly, we also found that plasma-derived AAT specifically inhibited the enzymatic activity of elastase but that AAT-Fc had no inhibitory effect on elastase activity.


Hybridoma | 2010

Interleukin-32 gamma specific monoclonal antibody and developing IL-32 specific ELISA.

Siyoung Lee; Sun-Jong Kim; Suyoung Bae; Jida Choi; Jaewoo Hong; Soyoon Ryoo; Hyunjhung Jhun; Kwangwon Hong; Eunsom Kim; Seunghyun Jo; Erk Her; Soo-Hyun Kim

Cytokines are essential coordinators of defensive immune responses for resolving the invasion of pathogens such as bacteria, virus, and fungi. However, dysregulated cytokines are the main cause of various autoinflammatory immune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis. Interleukin-32 (IL-32) is a recently described cytokine and characterized as a proinflammatory cytokine. IL-32 stimulates monocytes and macrophages to induce important proinflammatory cytokines (IL-1β, IL-6, and TNFα) and chemokines (IL-8 and MIP-2) by activating the NF-κB and p38 mitogen-activated protein (MAP) kinase pathways. The biological activities of IL-32 are associated with epidemic pathogens, Mycobacterium tuberculosis, influenza A virus, and human immunodeficiency virus (HIV). IL-32 is transcribed as six alternative splice variants (α, β, γ, δ, ɛ, and ζ), with IL-32γ being the most active isoform. However, it is unclear which isoform is related to specific disease activities since there are no high quality antibodies available to measure circulating IL-32 in biological samples of patients. Therefore, we developed specific anti-human IL-32γ monoclonal antibodies from recombinant human IL-32γ, which was expressed in Escherichia coli. The IL-32γ specific monoclonal antibodies recognized IL-32 in cell culture supernatants and serum of IL-32γ transgenic mice. The newly developed IL-32γ monoclonal antibodies will be a useful tool to measure IL-32 level in serum samples of various inflammatory diseases. These monoclonal antibodies will be helpful in investigating the precise function of IL-32 in immune responses and in autoinflammatory diseases.


Cytokine | 2014

IL-32γ overexpression accelerates streptozotocin (STZ)-induced type 1 diabetes

Hyunjhung Jhun; Jida Choi; Jaewoo Hong; Siyoung Lee; Areum Kwak; Eunsom Kim; Seunghyun Jo; Soyoon Ryoo; Yoojung Lim; Do Young Yoon; Jin Tae Hong; Tae Sung Kim; Young Min Lee; Keeho Song; Soo Hyun Kim

Interleukin-32 (IL-32) is a cytokine produced by T lymphocytes, natural killer (NK) cells, monocytes and epithelial cells. There are five splicing variants (α, β, γ, δ, and ε) and IL-32γ is the most active isoform. We generated human IL-32γ transgenic (IL-32γ TG) mice, displaying a high level of IL-32γ expression in the pancreas. We investigated the effect of IL-32γ on streptozotocin (STZ)-induced type 1 diabetes model using IL-32γ TG mice. After a suboptimal diabetogenic dose of STZ administration, IL-32γ TG mice showed significantly increased blood glucose level comparing with that of wild type (WT) mice at day 5. Inflammatory cytokines levels such as, IL-6, TNFα, IFNγ and IL-1β, in pancreas and liver lysates were accessed by a specific cytokine ELISA. The proinflammatory cytokines were significantly enhanced in the pancreas of IL-32γ TG mice comparing to that of WT mice whereas those cytokines levels in liver of IL-32γ TG and WT mice were not changed by STZ. These data indicate that the overexpression of IL-32γ contributes to initial islet β-cells injury and inflammation in pancreas and aggravates STZ-induced type 1 diabetes.


Photomedicine and Laser Surgery | 2009

The effects of light-emitting diode irradiation at 610 nm and 710 nm on murine T-cell subset populations.

Jeong H. Lim; Jong-Min Lee; Jida Choi; Jaewoo Hong; Hyunjhung Jhun; Jinsoo Han; Soo-Hyun Kim

OBJECTIVE The aim of this study was to investigate the effects of light-emitting diode (LED) irradiation (radiant power, 0.047 mW; irradiation area, 1.13 cm(2)) at 610 nm and 710 nm on T-lymphocyte subset populations and cytokine expression using an in vivo rat model. BACKGROUND DATA The proliferation of CD4+ T lymphocytes was induced by polychromatic visible polarized light at the range of 540-780 nm in a previous study, but the specific target wavelength for this effect has not yet been identified. METHODS Before and after 4 weeks of LED phototherapy, whole blood samples were collected from 610 nm, 710 nm, and control groups. The percentages of CD4+ and CD8+ T lymphocyte populations were determined by flow cytometry. The transcript levels of representative cytokines of CD4+ T-cell (interleukin [IL]-4, interferon [IFN]gamma) and proinflammatory cytokines (IL-1beta, IL-6) were assessed with the reverse transcriptase-polymerase chain reaction. RESULTS The population of CD4+ T cells increased significantly in 710 nm group on day 28 (p < 0.05), but it did not increase in the 610 nm or control group. The population of CD8+ T cells did not show any significant change after irradiation in all groups. The mRNA expression of IL-4 increased in both the 610 nm and 710 nm groups compared to the control group, but IFNgamma was not detected in any group. The transcripts of IL-1beta and IL-6 were slightly induced in the 710 nm group. CONCLUSION The in vivo irradiation of 710 nm wavelength LED significantly increases the population of murine CD4+ T cells, which suggests that this new phototherapeutic regimen might be promising for CD4+ T lymphocyte-mediated immune modulation therapy.


Immunologic Research | 2013

The inhibitory function of Fc-ST2 depends on cell type; IL-1RAcP and ST2 are necessary but insufficient for IL-33 activity

Kwang-Won Hong; Young Min Lee; Siyoung Lee; Sungnoh Hong; Suyoung Bae; Jaewoo Hong; Jida Choi; Hyunjhung Jhun; Areum Kwak; Eunsom Kim; Seunghyun Jo; Tae-Bong Kang; You Sook Cho; Yong-Gil Kim; Soo Hyun Kim

IL-33 (IL-1F11) is a member of IL-1 family ligand, which stimulates the production of inflammatory cytokines. IL-33 receptor complex is comprised of IL-1 receptor accessory protein (IL-1RAcP) and ST2 that are activated by IL-33 ligand binding. ST2 is a ligand-binding chain of the IL-33 receptor component, and the soluble ST2 form possesses antagonistic activity. Here, we expressed the extracellular domain of ST2-fused to the immunoglobulin of IgG1 constant region in order to generate a soluble recombinant Fc-ST2. Human and mouse recombinant Fc-ST2 protein were expressed in Chinese hamster ovary cells and purified using a mini-protein A affinity chromatography. The recombinant Fc-ST2 protein was used to examine inhibitory function in IL-33-induced cytokine production in different cell types. The human Fc-ST2 abolished IL-33-induced IL-8 production in human mast cells, but mouse Fc-ST2 failed to inhibit IL-33-induced TNFα production in mouse Raw 264.7 macrophage cells. We further investigated the expression of IL-33 receptor component with various cell lines. IL-33 receptors expression pattern and Fc-ST2 inhibitory activity in different cell types suggest that IL-1RAcP and ST2 are necessary but insufficient for IL-33 activity. Our results suggest that an additional receptor component may participate in the biological activity of IL-33.


Journal of Biological Chemistry | 2016

Proinsulin Shares a Motif with Interleukin-1α (IL-1α) and Induces Inflammatory Cytokine via Interleukin-1 Receptor 1

Siyoung Lee; Eunsom Kim; Hyunjhung Jhun; Jaewoo Hong; Areum Kwak; Seunghyun Jo; Suyoung Bae; Jong-Ho Lee; Busun Kim; Jung Min Lee; Sulah Youn; Somi Kim; Miyeon Kim; Hyun Woo Kim; Young Min Lee; Dong-Ki Choi; Yong-Sung Kim; Soo Hyun Kim

Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1.

Collaboration


Dive into the Hyunjhung Jhun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soo-Hyun Kim

St. George's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge