Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunki Kim is active.

Publication


Featured researches published by Hyunki Kim.


ieee nuclear science symposium | 2002

FastSPECT II: a second-generation high-resolution dynamic SPECT imager

Lars R. Furenlid; Donald W. Wilson; Yichun Chen; Hyunki Kim; P.J. Pictraski; M.J. Crawford; Harrison H. Barrett

FastSPECT II is a recently commissioned 16-camera small-animal SPECT imager built with modular scintillation cameras and list-mode data-acquisition electronics. The instrument is housed in a lead-shielded enclosure and has exchangeable aperture assemblies and adjustable camera positions for selection of magnification, pinhole size, and field of view. The calibration of individual cameras and measurement of an overall system imaging matrix (1 mm/sup 3/ voxels) are supported via a five-axis motion-control system. Details of the system integration and results of characterization and performance measurements are presented along with first tomographic images. The dynamic imaging capabilities of the instrument are explored and discussed.


Medical Physics | 2006

SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

Hyunki Kim; Lars R. Furenlid; Michael J. Crawford; Donald W. Wilson; H. Bradford Barber; Todd E. Peterson; William C. J. Hunter; Zhonglin Liu; Harrison H. Barrett

The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.


Radiology | 2008

Breast Tumor Xenografts: Diffusion-weighted MR Imaging to Assess Early Therapy with Novel Apoptosis-Inducing Anti-DR5 Antibody

Hyunki Kim; Desiree E. Morgan; Huadong Zeng; William E. Grizzle; Jason M. Warram; Cecil R. Stockard; Deli Wang; Kurt R. Zinn

PURPOSE To measure the early therapeutic response to a novel apoptosis-inducing antibody, TRA-8, by using diffusion-weighted magnetic resonance (MR) imaging in a mouse breast cancer model. MATERIALS AND METHODS Animal experiments had institutional animal care and use committee approval. Four groups of nude mice bearing luciferase-positive breast tumors (four to five mice with eight to 10 tumors per group) were injected intravenously with 0 mg (group 1), 0.025 mg (group 2), 0.100 mg (group 3), or 0.200 mg (group 4) of TRA-8 on days 0 and 3. Diffusion-weighted imaging, anatomic MR imaging, and bioluminescence imaging were performed on days 0, 3, and 6 before dosing. Averaged apparent diffusion coefficients (ADCs) for both whole tumor volume and a 1-mm peripheral tumor shell were calculated and were compared with tumor volume and living tumor cell changes. After imaging at day 6, proliferating and apoptotic cell densities were measured with Ki67 and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling, or TUNEL, staining, respectively, and were compared with cleaved caspase-3 density. RESULTS The ADC increase at day 3 was dependent on TRA-8 dose level, averaging 6% +/- 3 (standard error of mean), 19% +/- 4, 14% +/- 4, and 34% +/- 7 in the whole tumor volume and 1% +/- 2, 9% +/- 5, 13% +/- 5, and 30% +/- 8 in the outer 1-mm tumor shell only for groups 1, 2, 3, and 4, respectively. The ADC increase in group 4 was significantly higher (P = .0008 and P = .0189 for whole tumor volume and peripheral region, respectively) than that in group 1 on day 3, whereas tumor size did not significantly differ. At day 3, the dose-dependent ADC increases were linearly proportional to apoptotic cell and cleaved caspase-3 densities and were inversely proportional to the density of cells showing Ki67 expression. CONCLUSION Diffusion-weighted imaging enabled measurement of early breast tumor response to TRA-8 treatment, prior to detectable tumor shrinkage, providing an effective mechanism to noninvasively monitor TRA-8 efficacy. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/248/3/844/DC1.


Cancer Research | 2008

Early Therapy Evaluation of Combined Anti–Death Receptor 5 Antibody and Gemcitabine in Orthotopic Pancreatic Tumor Xenografts by Diffusion-Weighted Magnetic Resonance Imaging

Hyunki Kim; Desiree E. Morgan; Donald J. Buchsbaum; Huadong Zeng; William E. Grizzle; Jason M. Warram; Cecil R. Stockard; Lacey R. McNally; Joshua W. Long; Jeffrey C. Sellers; Andres Forero; Kurt R. Zinn

Early therapeutic efficacy of anti-death receptor 5 antibody (TRA-8) combined with gemcitabine was measured using diffusion-weighted magnetic resonance imaging (DWI) in an orthotopic pancreatic tumor model. Groups 1 to 4 of severe combined immunodeficient mice (n = 5-7 per group) bearing orthotopically implanted, luciferase-positive human pancreatic tumors (MIA PaCa-2) were subsequently (4-5 weeks thereafter) injected with saline (control), gemcitabine (120 mg/kg), TRA-8 (200 mug), or TRA-8 combined with gemcitabine, respectively, on day 0. DWI, anatomic magnetic resonance imaging, and bioluminescence imaging were done on days 0, 1, 2, and 3 after treatment. Three tumors from each group were collected randomly on day 3 after imaging, and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining was done to quantify apoptotic cellularity. At just 1 day after starting therapy, the changes of apparent diffusion coefficient (ADC) in tumor regions for group 3 (TRA-8) and group 4 (TRA-8/Gem) were 21 +/- 9% (mean +/- SE) and 27 +/- 3%, respectively, significantly higher (P < 0.05) than those of group 1 (-1 +/- 5%) and group 2 (-2 +/- 4%). There was no statistical difference in tumor volumes for the groups at this time. The mean ADC values of groups 2 to 4 gradually increased over 3 days, which were concurrent with tumor volume regressions and bioluminescence signal decreases. Apoptotic cell densities of tumors in groups 1 to 4 were 0.7 +/- 0.4%, 0.6 +/- 0.2%, 3.1 +/- 0.9%, and 4.7 +/- 1.0%, respectively, linearly proportional to the ADC changes on day 1. Further, the ADC changes were highly correlated with the previously reported mean survival times of animals treated with the same agents and doses. This study supports the clinical use of DWI for pancreatic tumor patients for early assessment of drug efficacy.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice

Ranu Surolia; Suman Karki; Hyunki Kim; Zhihong Yu; Tejaswini Kulkarni; Sergey B. Mirov; A. Brent Carter; Steven M. Rowe; Sadis Matalon; Victor J. Thannickal; Anupam Agarwal; Veena B. Antony

Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema.


Breast Cancer Research and Treatment | 2010

Adoptively transferred ex vivo expanded γδ-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer

Benjamin H. Beck; Hyung-Gyoon Kim; Hyunki Kim; Sharon Samuel; Zhiyong Liu; Robin Shrestha; Hilary Haines; Kurt R. Zinn; Richard D. Lopez

In contrast to antigen-specific αβ-T cells (adaptive immune system), γδ-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of γδ-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of γδ-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of γδ-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred γδ-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled γδ-T cells, we first show that adoptively transferred γδ-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the γδ-T cell receptor (TCR), we determined that localization of adoptively transferred γδ-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred γδ-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer γδ-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred γδ-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred γδ-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling γδ-T cells allows for the tracking of adoptively transferred γδ-T cells in tumor-bearing hosts.


Clinical Cancer Research | 2008

Treatment of Human Colon Cancer Xenografts with TRA-8 Anti-death Receptor 5 Antibody Alone or in Combination with CPT-11

Patsy G. Oliver; Albert F. LoBuglio; Kurt R. Zinn; Hyunki Kim; Li Nan; Tong Zhou; Wenquan Wang; Donald J. Buchsbaum

Purpose: This study was designed to evaluate the in vitro cytotoxicity and in vivo efficacy of TRA-8, a mouse monoclonal antibody that binds to the DR5 death receptor for tumor necrosis factor–related apoptosis-inducing ligand (also called Apo2L), alone and in combination with CPT-11, against human colon cancer cells and xenografts. Experimental Design: DR5 expression was assessed on human colon cancer cell lines using flow cytometry, and cellular cytotoxicity after TRA-8 treatment, alone and in combination with SN-38, was determined by measuring cellular ATP levels. Tumor growth inhibition and regression rates of well-established subcutaneous COLO 205, SW948, HCT116, and HT-29 colon cancer xenografts in athymic nude mice treated with TRA-8 or CPT-11 alone and in combination were determined. 99mTc-TRA-8 was used to examine tumor localization of TRA-8 in animals bearing each of the four xenografts. In addition, whole-body biodistribution and imaging was carried out in COLO 205–bearing animals using in vivo single-photon emission computed tomography imaging and tissue counting. Results: DR5 expression was highest on HCT116, intermediate on SW948 and COLO 205 cells, and lowest on HT-29 cells. COLO 205 cells were the most sensitive to TRA-8–induced cytotoxicity in vitro, SW948 and HCT116 cell lines were moderately sensitive, and HT-29 cells were resistant. Combination treatment with TRA-8 and SN-38 produced additive to synergistic cytotoxicity against all cell lines compared with either single agent. The levels of apoptosis in all cell lines, including HT-29, were increased by combination treatment with SN-38. In vivo, combination therapy with TRA-8 and CPT-11 was superior to either single-agent regimen for three of the xenografts: COLO 205, SW948, and HCT116. COLO 205 tumors were most responsive to therapy with 73% complete regressions after combination therapy. HT-29 cells derived no antitumor efficacy from TRA-8 therapy. Tumor xenografts established from the four colon cancer cell lines had comparable specific localization of 99mTc-TRA-8. Conclusions:In vitro and in vivo effects of TRA-8 anti-DR5 monoclonal antibody on four different colon cancer cell lines and xenografts were quite variable. The HT-29 cell line had low surface DR5 expression and was resistant to TRA-8 both in vitro and in vivo. Three cell lines (COLO 205, SW948, and HCT116) exhibited moderate to high sensitivity to TRA-8–mediated cytotoxicity which was further enhanced by the addition of SN-38, the active metabolite of CPT-11. In vivo, the combination of TRA-8 and CPT-11 treatment produced the highest antitumor efficacy against xenografts established from the three TRA-8–sensitive tumor cell lines. All four colon cancer xenografts had comparable localization of 99mTc-TRA-8. These studies support the strategy of TRA-8/CPT-11 combined treatment in human colon cancer clinical trials.


Cancer and Metastasis Reviews | 2014

Antibody-based imaging strategies for cancer

Jason M. Warram; Esther de Boer; Anna G. Sorace; Thomas K. Chung; Hyunki Kim; Rick G. Pleijhuis; Gooitzen M. van Dam; Eben L. Rosenthal

Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.


ieee nuclear science symposium | 2002

SemiSPECT: a small-animal imaging system based on eight CdZnTe pixel detectors

T.F. Peterson; Hyunki Kim; M.J. Crawford; B.M. Gershman; William C. J. Hunter; H.B. Barber; Lars R. Furenlid; Donald W. Wilson; Harrison H. Barrett

We have constructed a SPECT system for small animals that utilizes eight CdZnTe pixel detectors. The eight detectors are arranged in a single octagonal ring, where each views the object to be imaged through a single pinhole. Additional projections are obtained via rotation of the animal. Each CdZnTe detector is approximately 2 mm in thickness and is patterned on one surface into a 64/spl times/64 array of pixels with 380 micron pitch. We have designed an electronic readout system capable of collecting data front the eight detectors in listmode. In this scheme each event entry for a gamma-ray hit includes the pulse height of the pixel with the largest signal and the pulse height for each of its eight nearest neighbors. We present details of the overall design, the electronics, and system performance.


Molecular Imaging | 2011

Early therapy evaluation of combined cetuximab and irinotecan in orthotopic pancreatic tumor xenografts by dynamic contrast-enhanced magnetic resonance imaging.

Hyunki Kim; Karri Folks; Lingling Guo; Jeffery Sellers; Naomi Fineberg; Cecil R. Stockard; William E. Grizzle; Donald J. Buchsbaum; Desiree E. Morgan; James F. George; Kurt R. Zinn

Early pancreatic cancer response following cetuximab and/or irinotecan therapies was measured by serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before and during therapy. Groups 1 to 4 (n = 6/group) of SCID mice bearing orthotopic pancreatic adenocarcinoma xenografts expressing luciferase were treated with phosphate-buffered saline, cetuximab, irinotecan, or cetuximab combined with irinotecan, respectively, twice weekly for 3 weeks. DCE-MRI was performed on days 0, 1, 2, and 3 after therapy initiation, whereas anatomic magnetic resonance imaging was performed on days 0, 1, 2, 3, 6, and 13. Bioluminescence imaging was performed on days 0 and 21. At day 21, all tumors were collected for further histologic analyses (Ki-67 and CD31 staining), whereas tumor dimensions were measured by calipers. The Ktrans values in the 0.5 mm–thick peripheral tumor region were calculated, and the changes in Ktrans during the 3 days posttherapy were compared to tumor volume changes, bioluminescent signal changes, and histologic findings. The Ktrans changes in the peripheral tumor region after 3 days of therapy were linearly correlated with 21-day decreases in tumor volume (p < .001), bioluminescent signal (p = .050), microvessel densities (p = .002), and proliferating cell densities (p = .001). This study supports the clinical use of DCE-MRI for pancreatic cancer patients for early assessment of an anti–epidermal growth factor receptor therapy combined with chemotherapy.

Collaboration


Dive into the Hyunki Kim's collaboration.

Top Co-Authors

Avatar

Kurt R. Zinn

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Guihua Zhai

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Cecil R. Stockard

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sharon Samuel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Donald J. Buchsbaum

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

William E. Grizzle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong Zhou

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi Fineberg

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge