Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunkyu Lee is active.

Publication


Featured researches published by Hyunkyu Lee.


Journal of Experimental Psychology: Human Perception and Performance | 2008

Attentional spreading in object-based attention.

Ashleigh M. Richard; Hyunkyu Lee; Shaun P. Vecera

The authors investigated 2 effects of object-based attention: the spread of attention within an attended object and the prioritization of search across possible target locations within an attended object. Participants performed a flanker task in which the location of the task-relevant target was fixed and known to participants. A spreading attention account predicts that object-based attention will arise from the spread of attention through an attended object. A prioritization account predicts that there will be a small, if any, object-based effect because the location of the target is known in advance and objects are not required to prioritize the deployment of attentional search. The results suggested that object-based attention operates via the spread of attention within an object.


Acta Psychologica | 2010

Transfer of skill engendered by complex task training under conditions of variable priority.

Walter R. Boot; Chandramallika Basak; Kirk I. Erickson; Mark Neider; Daniel J. Simons; Monica Fabiani; Gabriele Gratton; Michelle W. Voss; Ruchika Shaurya Prakash; Hyunkyu Lee; Kathy A. Low; Arthur F. Kramer

We explored the theoretical underpinnings of a commonly used training strategy by examining issues of training and transfer of skill in the context of a complex video game (Space Fortress, Donchin, 1989). Participants trained using one of two training regimens: Full Emphasis Training (FET) or Variable Priority Training (VPT). Transfer of training was assessed with a large battery of cognitive and psychomotor tasks ranging from basic laboratory paradigms measuring reasoning, memory, and attention to complex real-world simulations. Consistent with previous studies, VPT accelerated learning and maximized task mastery. However, the hypothesis that VPT would result in broader transfer of training received limited support. Rather, transfer was most evident in tasks that were most similar to the Space Fortress game itself. Results are discussed in terms of potential limitations of the VPT approach.


Frontiers in Psychology | 2014

Cognitive training with casual video games: points to consider.

Pauline L. Baniqued; Michael Kranz; Michelle W. Voss; Hyunkyu Lee; Joshua D. Cosman; Joan Severson; Arthur F. Kramer

Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.


Behavioural Brain Research | 2012

Videogame training strategy-induced change in brain function during a complex visuomotor task

Hyunkyu Lee; Michelle W. Voss; Ruchika Shaurya Prakash; Walter R. Boot; Loan T. K. Vo; Chandramallika Basak; Matt VanPatter; Gabriele Gratton; Monica Fabiani; Arthur F. Kramer

Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management.


Frontiers in Human Neuroscience | 2012

Examining neural correlates of skill acquisition in a complex videogame training program

Ruchika Shaurya Prakash; Angeline A. De Leon; Lyla Mourany; Hyunkyu Lee; Michelle W. Voss; Walter R. Boot; Chandramallika Basak; Monica Fabiani; Gabriele Gratton; Arthur F. Kramer

Acquisition of complex skills is a universal feature of human behavior that has been conceptualized as a process that starts with intense resource dependency, requires effortful cognitive control, and ends in relative automaticity on the multi-faceted task. The present study examined the effects of different theoretically based training strategies on cortical recruitment during acquisition of complex video game skills. Seventy-five participants were recruited and assigned to one of three training groups: (1) Fixed Emphasis Training (FET), in which participants practiced the game, (2) Hybrid Variable-Priority Training (HVT), in which participants practiced using a combination of part-task training and variable priority training, or (3) a Control group that received limited game play. After 30 h of training, game data indicated a significant advantage for the two training groups relative to the control group. The HVT group demonstrated enhanced benefits of training, as indexed by an improvement in overall game score and a reduction in cortical recruitment post-training. Specifically, while both groups demonstrated a significant reduction of activation in attentional control areas, namely the right middle frontal gyrus, right superior frontal gyrus, and the ventral medial prefrontal cortex, participants in the control group continued to engage these areas post-training, suggesting a sustained reliance on attentional regions during challenging task demands. The HVT group showed a further reduction in neural resources post-training compared to the FET group in these cognitive control regions, along with reduced activation in the motor and sensory cortices and the posteromedial cortex. Findings suggest that training, specifically one that emphasizes cognitive flexibility can reduce the attentional demands of a complex cognitive task, along with reduced reliance on the motor network.


PLOS ONE | 2011

Predicting individuals' learning success from patterns of pre-learning MRI activity

Loan T. K. Vo; Dirk Walther; Arthur F. Kramer; Kirk I. Erickson; Walter R. Boot; Michelle W. Voss; Ruchika Shaurya Prakash; Hyunkyu Lee; Monica Fabiani; Gabriele Gratton; Daniel J. Simons; Bradley P. Sutton; Michelle Wang

Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills.


Psychological Science | 2005

Visual Cognition Influences Early Vision The Role of Visual Short-Term Memory in Amodal Completion

Hyunkyu Lee; Shaun P. Vecera

A partly occluded visual object is perceptually filled in behind the occluding surface, a process known as amodal completion or visual interpolation. Previous research focused on the image-based properties that lead to amodal completion. In the present experiments, we examined the role of a higher-level visual process—visual short-term memory (VSTM)—in amodal completion. We measured the degree of amodal completion by asking participants to perform an object-based attention task on occluded objects while maintaining either zero or four items in visual working memory. When no items were stored in VSTM, participants completed the occluded objects; when four items were stored in VSTM, amodal completion was halted (Experiment 1). These results were not caused by the influence of VSTM on object-based attention per se (Experiment 2) or by the specific location of to-be-remembered items (Experiment 3). Items held in VSTM interfere with amodal completion, which suggests that amodal completion may not be an informationally encapsulated process, but rather can be affected by high-level visual processes.


Frontiers in Human Neuroscience | 2014

Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task.

Aki Nikolaidis; Michelle W. Voss; Hyunkyu Lee; Loan T. K. Vo; Arthur F. Kramer

Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.


PLOS ONE | 2015

The Relationship Between Intelligence and Training Gains is Moderated by Training Strategy

Hyunkyu Lee; Walter R. Boot; Pauline L. Baniqued; Michelle W. Voss; Ruchika Shaurya Prakash; Chandramallika Basak; Arthur F. Kramer

We examined the relationship between training regimen and fluid intelligence in the learning of a complex video game. Fifty non-game-playing young adults were trained on a game called Space Fortress for 30 hours with one of two training regimens: 1) Hybrid Variable-Priority Training (HVT), with part-task training and a focus on improving specific skills and managing task priorities, and 2) Full Emphasis Training (FET) in which participants practiced the whole game to obtain the highest overall score. Fluid intelligence was measured with the Raven’s Progressive Matrix task before training. With FET, fluid intelligence was positively associated with learning, suggesting that intellectual ability played a substantial role in determining individual differences in training success. In contrast, with HVT, fluid intelligence was not associated with learning, suggesting that individual differences in fluid intelligence do not factor into training success in a regimen that emphasizes component tasks and flexible task coordination. By analyzing training effects in terms of individual differences and training regimens, the current study offers a training approach that minimizes the potentially limiting effect of individual differences.


Wiley Interdisciplinary Reviews: Cognitive Science | 2013

Bridging across cognitive training and brain plasticity: a neurally inspired computational model of interactive skill learning

Wai Tat Fu; Hyunkyu Lee; Walter R. Boot; Arthur F. Kramer

This article reviews recent empirical and brain imaging data on effects of cognitive training methods on complex interactive skill learning, and presents a neurally inspired computational model that characterizes the effects of these training methods. In particular, the article focuses on research that shows that variable priority training (VPT), which requires learners to shift their priorities to different task components during training, often leads to better acquisition and retention of skills than fixed priority training (FPT). However, there is only weak evidence that shows that VPT can enhance transfer of complex interactive skills to untrained situations. Brain imaging studies show that VPT leads to significantly lower activations and a higher reduction of activities in attentional control areas after training than FPT. Research also shows that the volume of the striatum predicts the learning effects, but only in VPT. The computational model, developed based on learning mechanisms at the neural level, bridges across the empirical and the braining imaging results by explaining the effects of VPT and FPT at both the behavioral and neural levels. The results were discussed in the context of previous findings on cognitive training. WIREs Cogn Sci 2013, 4:225-236. doi: 10.1002/wcs.1214 For further resources related to this article, please visit the WIREs website.

Collaboration


Dive into the Hyunkyu Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter R. Boot

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Chandramallika Basak

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Mozer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge