Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyunsoo Park is active.

Publication


Featured researches published by Hyunsoo Park.


Organic Letters | 2010

Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding.

Semin Lee; Yuran Hua; Hyunsoo Park; Amar H. Flood

Aryl-triazole pentads have been preorganized with intramolecular hydrogen bonds to enhance chloride binding. This outcome highlights the dual hydrogen bond donor and acceptor properties of 1,2,3-triazoles.


Journal of the American Chemical Society | 2010

Torsionally Responsive C3-Symmetric Azo Dyes: Azo−Hydrazone Tautomerism, Conformational Switching, and Application for Chemical Sensing

Ho Yong Lee; Xinli Song; Hyunsoo Park; Mu-Hyun Baik; Dongwhan Lee

An efficient triple azo coupling reaction between anilines and phloroglucinol furnished a series of C(3)-symmetric molecules 7-9 supporting multiple conjugation pathways that converge at the molecular core. A combination of (1)H/(13)C NMR spectroscopy, X-ray crystallography, and density functional theory computational studies provided a coherent picture of the [n,pi]-conjugated molecular core, which is best described as the tris(hydrazone) [rather than tris(azo)] tautomer stabilized by resonance-assisted hydrogen bonding. For a homologous series of compounds, an increase in the torsional angles between the planar molecular core and the peripheral aryl groups results in a systematic blue shift in the low-energy electronic transitions (7, 523 nm; 8, 505 nm; 9, 445 nm in CHCl(3)) that qualitatively correlates with the shrinkage of effective conjugation through structural distortion. Similar spectral shifts could also be induced by amine substrates that interact with the intramolecular hydrogen-bonding network to trigger bond-twisting motions. Specifically, a brief exposure of a thin film of 7 to vapor samples of butyl-, hexyl-, diethyl-, and diisopropylamine resulted in a rapid and reversible color change from pink to dark-orange. Under similar conditions, however, triethylamine did not elicit any detectable color change, despite the fact that it has a significantly higher vapor pressure than n-hexylamine. These findings implicate that the hydrogen-bonding donor ability is a key requirement for the binding-induced conformational switching, which allows for direct naked-eye detection of volatile amines under ambient conditions.


Journal of the American Chemical Society | 2010

Low-Coordinate and Neutral Nitrido Complexes of Vanadium

Ba L. Tran; Maren Pink; Xinfeng Gao; Hyunsoo Park; Daniel J. Mindiola

Two neutral and four-coordinate vanadium(V)-nitrido complexes have been prepared via the thermolysis of metastable vanadium(III)-azido precursors. All complexes have been fully characterized by multinuclear NMR, FT-IR, isotopic labeling, and, in most instances, single crystal X-ray diffraction. On the basis of activation parameters, N(2) extrusion to form the V[triple bond]N moiety is proposed to occur via an ordered and early transition state having three- or four-triazametallacycle frameworks. In addition, we demonstrate the nitrido ligand to undergo incomplete N-atom transfer to CO and CN{2,6-Me(2)-C(6)H(3)) to form the bent V-N=C=X (X = O, N{2,6-Me(2)-C(6)H(3)}) ligands with concomitant 2e(-) reduction at the vanadium center.


Journal of the American Chemical Society | 2010

Phosphinidene Complexes of Scandium: Powerful PAr Group-Transfer Vehicles to Organic and Inorganic Substrates

Benjamin F. Wicker; Jennifer Scott; José G. Andino; Xinfeng Gao; Hyunsoo Park; Maren Pink; Daniel J. Mindiola

The first phosphinidene complexes of scandium are reported in this contribution. When complex (PNP)Sc(CH(3))Br (1) is treated with 1 equiv of LiPH[Trip] (Trip = 2,4,6-(i)Pr(3)C(6)H(2)), the dinuclear scandium phosphinidene complex [(PNP)Sc(mu(2)-P[Trip])](2) (2) is obtained. However, treating 1 with a bulkier primary phosphide produces the mononuclear scandium ate complex [(PNP)Sc(mu(2)-P[DMP])(mu(2)-Br)Li] (3) (DMP = 2,6-Mes(2)C(6)H(3)). The Li cation in 3 can be partially encapsulated with DME to furnish a phosphinidene salt derivative, (PNP)Sc(mu(2)-P[DMP])(mu(2)-Br)Li(DME)] (4). We also demonstrate that complex 3 can readily deliver the phosphinidene ligand to organic substrates such as OCPh(2) and Cl(2)PMes* as well as inorganic fragments such as Cp(2)ZrCl(2), Cp*(2)TiCl(2), and Cp(2)TiCl(2) in the presence of P(CH(3))(3). Complexes 2-4 have been fully characterized, including single crystal X-ray diffraction and DFT studies.


Angewandte Chemie | 2010

Reactivity Studies of a Masked Three-Coordinate Vanadium(II) Complex†

Ba L. Tran; Madhavi Singhal; Hyunsoo Park; Oanh P. Lam; Maren Pink; J. Krzystek; Andrew Ozarowski; Joshua Telser; Karsten Meyer; Daniel J. Mindiola

Dedicated to Professor Herbert W. RoeskyThe ability of vanadium to exist in various oxidation statesrenders this ion ideal for multielectron reactions, and there-fore, a suitable metal for incorporation into novel ligandframeworks. An archetypal example of a low-valent vana-dium species is vanadocene, [V(Cp)


Journal of the American Chemical Society | 2010

Resonating valence bond and {sigma}-charge density wave phases in a benzannulated phenalenyl radical.

Pradip Bag; Mikhail E. Itkis; Sushanta K. Pal; Bruno Donnadieu; Fook S. Tham; Hyunsoo Park; John A. Schlueter; T. Siegrist; Robert C. Haddon

We report the preparation of the first benzannulated phenalenyl neutral radical conductor (18), and we show that the compound displays unprecedented solid state behavior: the structure is dominated by two sets of intermolecular interactions: (1) a pi-chain structure with superimposed pi-overlap of the benzannulated phenalenyls along [0 0 1], and (2) an interchain overlap involving a pair of carbon atoms (C4) along [0 1 0]. The pi-chain-type stacking motif is reminiscent of previously reported phenalenyl radicals and the room temperature structure (space group P2/c) together with the conductivity of sigma(RT) = 0.03 S/cm and the Pauli-like magnetic susceptibility are best described by the resonating valence bond (RVB) model. The interchain interaction is unstable with respect to the formation of a sigma-charge density wave (sigma-CDW) involving pairs of C4 carbon atoms between adjacent radicals and this phase is characterized by the P2(1)/c space group which involves a doubling of the unit cell along the [0 1 0] direction. The RVB and CDW phases compete for structural occupancy throughout the whole temperature range (15-293 K) with the RVB phase predominating at 15 and 293 K and the sigma-CDW phase achieving a maximum structural occupancy of about 60% at 150 K where it produces clearly discernible effects on the magnetism and conductivity.


Inorganic Chemistry | 2010

Ligand influence on metal aggregation: a unique bonding mode for pyridylpyrrolides.

José G. Andino; Jaime A. Flores; Jonathan A. Karty; Joseph P. Massa; Hyunsoo Park; Nikolay P. Tsvetkov; Robert J. Wolfe; Kenneth G. Caulton

The synthesis and characterization of a Cu(I) complex with a cis-bidentate monoanionic nitrogenous ligand, 2-pyridylpyrrolide, L, is reported. This shows binding of one base B = MeCN or CO per copper in a species LCu(B), but this readily releases the volatile ligand under vacuum with aggregation of transient LCu to a mixture of two enantiomers of a chiral trimer: a zwitterion containing inequivalent Cu(I) centers, possible via a new bonding mode of pyridylpyrrolide, and one with nitrogen lone pairs donating to two different metals. Density functional theory calculations show the energetics of both ligand binding and aggregation (including dimer and monomer alternatives), as well as the ability of this ligand to rotate away from planarity to accommodate a bridging structural role. The trimer serves as a synthon for the simple fragment LCu.


Journal of the American Chemical Society | 2013

Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

Sarah E. Lindahl; Hyunsoo Park; Maren Pink; Jeffrey M. Zaleski

Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and resulting cisplatin-like byproduct represents an intriguing new strategy for potential dual-threat metalloenediyne therapeutics.


Chemical Communications | 2011

Ratiometric detection of mercury ions in water: accelerated response kinetics of azo chromophores having ethynyl ligand tethers

Ho Yong Lee; Junyong Jo; Hyunsoo Park; Dongwhan Lee

The metal-induced intramolecular cyclization reaction of an azo dye was exploited for the colorimetric detection of mercury ions in water. The molecular probe 3 responds selectively to nM-level Hg(II) ions in neutral aqueous solutions.


Supramolecular Chemistry | 2014

Self-assembly snapshots of a 2 × 2 copper(I) grid

Lauren E. Manck; Christopher R. Benson; Andrew I. Share; Hyunsoo Park; Douglas A. Vander Griend; Amar H. Flood

Self-assembled 2 × 2 grids have been characterised as high-fidelity species produced when the correct stoichiometric ratios are met, but rarely are the individual steps leading to and from their formation characterised. Here, we present such a study using equilibrium-restricted factor analysis to model a set of UV–vis spectra starting from a bis-bidentate ligand to the assembly of a 2 × 2 grid complex upon titration with 1 equiv. of [Cu(MeCN)4](PF6) and to disassembly upon further titration. Intermediate species [CuL2]+, [Cu2L3]2+, [Cu3L2]3+ and [Cu2L]2+ are evidenced along the assembly and disassembly pathways. Complementary 1H NMR titrations are consistent with the rich set of complexes and equilibria involved. Given the nature of the assembly process, the assembly is entropy driven and likely enthalpy driven as well. The disassembly process is both enthalpy and entropy driven according to the standard free energy values derived from the modelling of the spectrophotometric titration data.

Collaboration


Dive into the Hyunsoo Park's collaboration.

Top Co-Authors

Avatar

Maren Pink

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

John A. Schlueter

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Halder

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie L. Manson

Eastern Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myung-Hwan Whangbo

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge