Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. A. Bond is active.

Publication


Featured researches published by I. A. Bond.


Nature | 2006

Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing

J.-P. Beaulieu; D. P. Bennett; P. Fouqué; A. Williams; M. Dominik; U. G. Jørgensen; D. Kubas; A. Cassan; C. Coutures; J. Greenhill; K. Hill; J. Menzies; Penny D. Sackett; M. D. Albrow; S. Brillant; J. A. R. Caldwell; J. J. Calitz; K. H. Cook; E. Corrales; M. Desort; S. Dieters; D. Dominis; J. Donatowicz; M. Hoffman; S. Kane; J.-B. Marquette; R. Martin; P. Meintjes; K. R. Pollard; Kailash C. Sahu

In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M⊕) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptunes mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5+5.5-2.7 M⊕ planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M[circdot] M-dwarf star, where M[circdot] refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.


Monthly Notices of the Royal Astronomical Society | 2008

The WFCAM Science Archive

Nigel Hambly; Ross Collins; N. J. G. Cross; Robert G. Mann; Mike Read; Eckhard Sutorius; I. A. Bond; J. Bryant; James P. Emerson; A. Lawrence; L. Rimoldini; Jonathan M. Stewart; P. M. Williams; A. J. Adamson; Paul Hirst; S. Dye; S. J. Warren

We describe the WFCAM Science Archive, which is the primary point of access for users of data from the wide-field infrared camera WFCAM on the United Kingdom Infrared Telescope (UKIRT), especially science catalogue products from the UKIRT Infrared Deep Sky Survey. We describe the database design with emphasis on those aspects of the system that enable users to fully exploit the survey data sets in a variety of different ways. We give details of the database-driven curation applications that take data from the standard nightly pipeline-processed and calibrated files for the production of science-ready survey data sets. We describe the fundamentals of querying relational databases with a set of astronomy usage examples, and illustrate the results.


Nature | 2011

Unbound or distant planetary mass population detected by gravitational microlensing

T. Sumi; K. Kamiya; D. P. Bennett; I. A. Bond; F. Abe; C. S. Botzler; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; M. Motomura; Y. Muraki; M. Nagaya; S. Nakamura; K. Ohnishi; T. Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; D. J. Sullivan; W. L. Sweatman; P. J. Tristram

Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice () as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.


Astronomy and Astrophysics | 2013

Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF

Thomas Bensby; J. C. Yee; Sofia Feltzing; Jennifer A. Johnson; A. Gould; Judith G. Cohen; Martin Asplund; Jorge Melendez; Sara Lucatello; C. Han; Ian B. Thompson; Avishay Gal-Yam; A. Udalski; D. P. Bennett; I. A. Bond; W. Kohei; T. Sumi; D. Suzuki; K. Suzuki; S. Takino; P. J. Tristram; N. Yamai; A. Yonehara

Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = −1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ −0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ −0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4−5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]−[Fe/H] abundance trends that the “knee” occurs around [Fe/H] = −0.3 to −0.2, which is a slightly higher metallicity as compared to the “knee” for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.


The Astrophysical Journal | 2004

OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event

I. A. Bond; A. Udalski; M. Jaroszyński; N. J. Rattenbury; Bohdan Paczynski; I. Soszyński; L. Wyrzykowski; M. K. Szymański; M. Kubiak; O. Szewczyk; K. Żebruń; G. Pietrzyński; F. Abe; D. P. Bennett; S. Eguchi; Y. Furuta; J. B. Hearnshaw; K. Kamiya; P. M. Kilmartin; Y. Kurata; K. Masuda; Y. Matsubara; Y. Muraki; S. Noda; T. Sako; T. Sekiguchi; D. J. Sullivan; T. Sumi; P. J. Tristram; T. Yanagisawa

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event, a short-duration (~7 days) low-amplitude deviation in the light curve due to a single-lens profile was observed in both the MOA (Microlensing Observations in Astrophysics) and OGLE (Optical Gravitational Lensing Experiment) survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 for the lensing system. If the lens system comprises a main-sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.


The Astrophysical Journal | 2006

Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common

A. Gould; A. Udalski; Deokkeun An; D. P. Bennett; A.-Y. Zhou; Subo Dong; N. J. Rattenbury; B. S. Gaudi; P. C. M. Yock; I. A. Bond; G. W. Christie; K. Horne; Jay Anderson; K. Z. Stanek; D. L. DePoy; Cheongho Han; J. McCormick; B.-G. Park; Richard W. Pogge; Shawn Poindexter; I. Soszyński; M. K. Szymański; M. Kubiak; Grzegorz Pietrzyński; O. Szewczyk; Ł. Wyrzykowski; K. Ulaczyk; Bohdan Paczynski; D. M. Bramich; C. Snodgrass

We detect a Neptune mass ratio (q 8 ? 10-5) planetary companion to the lens star in the extremely high magnification (A ~ 800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M ~ 0.5 M?, implying a planet mass of ~13 M? and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass ratio planets with projected separations of 0.6-1.6 Einstein radii, corresponding to 1.6-4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f = 0.38 over just 0.4 decades of planet-star separation. In particular, f > 16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is ? ~ 7-10 mas yr-1, implying that if the lens is sufficiently bright, I 23.8, it will be detectable by the Hubble Space Telescope by 3 years after peak. This would permit a more precise estimate of the lens mass and distance and, so, the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, and astrometry.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


The Astrophysical Journal | 2005

A jovian-mass planet in microlensing event OGLE-2005-BLG-071

A. Udalski; Michal Jaroszynski; Bohdan Paczynski; M. Kubiak; M. K. Szymański; I. Soszyński; Grzegorz Pietrzyński; K. Ulaczyk; O. Szewczyk; Ł. Wyrzykowski; G. W. Christie; D. L. DePoy; Subo Dong; Avishay Gal-Yam; B. S. Gaudi; A. Gould; Cheongho Han; Sebastien Lepine; J. McCormick; B.-G. Park; Richard W. Pogge; D. P. Bennett; I. A. Bond; Y. Muraki; P. J. Tristram; Philip Yock; J. P. Beaulieu; D. M. Bramich; S. Dieters; J. Greenhill

We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.


Astronomy and Astrophysics | 2011

Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - IV. Two bulge populations

Thomas Bensby; Daniel Adén; Jorge Melendez; A. Gould; Sofia Feltzing; Martin Asplund; Jennifer A. Johnson; Sara Lucatello; J. C. Yee; I. Ramirez; Judith G. Cohen; Ian B. Thompson; I. A. Bond; Avishay Gal-Yam; C. Han; T. Sumi; D. Suzuki; K. Wada; N. Miyake; K. Furusawa; K. Ohmori; To. Saito; P. J. Tristram; D. P. Bennett

Based on high-resolution (R ≈ 42 000 to 48 000) and high signal-to-noise (S/N ≈ 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the ^7Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] ≈ −0.6 and one at [Fe/H] ≈ + 0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade’s window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars arepredominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.


The Astrophysical Journal | 2003

Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis

T. Sumi; F. Abe; I. A. Bond; Rhea J. Dodd; J. B. Hearnshaw; M. Honda; Mareki Honma; Yukitoshi Kan-ya; P. M. Kilmartin; K. Masuda; Y. Matsubara; Y. Muraki; Takashi Nakamura; Ryoichi Nishi; S. Noda; K. Ohnishi; O. K. L. Petterson; N. J. Rattenbury; M. Reid; To. Saito; Y. Saito; H. D. Sato; M. Sekiguchi; J. Skuljan; D. J. Sullivan; Mine Takeuti; P. J. Tristram; S. Wilkinson; T. Yanagisawa; Philip Yock

We analyze the data of the gravitational microlensing survey carried out by the Microlensing Observations in Astrophysics (MOA) group during 2000 toward the Galactic bulge (GB). Our observations are designed to detect efficient high-magnification events with faint source stars and short-timescale events, by increasing the sampling rate up to ~6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale tE,out in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth τ = 2.59 × 10-6 toward the GB for events with timescales 0.3 10). These events are useful for studies of extrasolar planets.

Collaboration


Dive into the I. A. Bond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. P. Bennett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge