I. A. Ivanov
Budker Institute of Nuclear Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. A. Ivanov.
Fusion Science and Technology | 2009
A. V. Burdakov; A. V. Arzhannikov; V. T. Astrelin; V.I. Batkin; V. S. Burmasov; G. E. Derevyankin; V. G. Ivanenko; I. A. Ivanov; M. V. Ivantsivskiy; I. V. Kandaurov; V. V. Konyukhov; K. N. Kuklin; Sergei A. Kuznetsov; A. Makarov; M. A. Makarov; K. I. Mekler; S. V. Polosatkin; S. S. Popov; V. Postupaeva; A. F. Rovenskikh; A. A. Shoshin; S. L. Sinitsky; V. D. Stepanov; Yu. S. Sulyaev; Yu. A. Trunev; L. N. Vyacheslavov; Zubairov
Abstract The paper reviews recent experimental results from GOL-3. Currently efforts are focused on further development of a physical database for multiple-mirror confinement systems and also on an upgrade of plasma heating systems of GOL-3 device. In general, current GOL-3 parameters demonstrate good prospects of a multiple-mirror trap as a fusion reactor.
Fusion Science and Technology | 2007
A. V. Burdakov; A. Azhannikov; V. T. Astrelin; A. D. Beklemishev; V. S. Burmasov; G. E. Derevyankin; V. G. Ivanenko; I. A. Ivanov; M. V. Ivantsivsky; I. V. Kandaurov; V. V. Konyukhov; I. Kotelnikov; V. Kovenya; T. Kozlinskaya; K. N. Kuklin; A. S. Kuznetsov; Sergei A. Kuznetsov; K. Lotov; I. V. Timofeev; A. Makarov; K. I. Mekler; V. S. Nikolaev; S. S. Popov; V. V. Postupaev; S. V. Polosatkin; A. F. Rovenskikh; A. A. Shoshin; I. Shvab; S. L. Sinitsky; Yu. S. Sulyaev
Recent results of the experiments at GOL-3 facility are presented. In present configuration of the device, plasma with a density of 1014[divided by]1016 cm-3 is confined in a 12-meter-long solenoid, which comprises 55 corrugation cells with mirror ratio Bmax/Bmin=4.8/3.2 T. The plasma in the solenoid is heated up to 2-4 keV temperature by a high power relativistic electron beam (˜1 MeV, ˜30 kA, ˜8 μs, ˜120 kJ) injected through one of the ends. Mechanism of experimentally observed fast ion heating, issues of plasma stability and confinement are discussed.
Jetp Letters | 2003
A. V. Arzhannikov; V. T. Astrelin; A. V. Burdakov; I. A. Ivanov; V. S. Koidan; K. I. Mekler; V. V. Postupaev; A. F. Rovenskikh; S. V. Polosatkin; S. L. Sinitskii
The experimental results on a multiple-mirror trap GOL-3 with a short section of reduced magnetic field (“magnetic pit”) are presented. The reduced specific energy release from a relativistic electron beam in the pit brings about a region with a temperature several times lower than in the surrounding plasma. The existence of the low-temperature region directly demonstrates that the longitudinal electron heat conductivity is suppressed in the collective electron-beam interaction with plasma.
Plasma Physics Reports | 2005
A. V. Arzhannikov; V. T. Astrelin; A. V. Burdakov; I. A. Ivanov; V. S. Koidan; Sergei A. Kuznetsov; K. I. Mekler; S. V. Polosatkin; V. V. Postupaev; A. F. Rovenskikh; S. L. Sinitskii; Yu. S. Sulyaev; A. A. Shoshin
Results are presented from experimental studies of ion heating in the GOL-3 device. The experiments were carried out in a multimirror configuration with a local magnetic well. It was found that, during the injection of a relativistic electron beam, a decrease in the local density of the beam in a magnetic well, which is proportional to the decrease in the strength of the longitudinal magnetic field, results in the formation of a short plasma region with a low electron temperature. The measured longitudinal gradient of the plasma pressure corresponds to an electron temperature gradient of ∼2–3 keV/m. Axially nonuniform heating of the plasma electrons gives rise to the macroscopic motion of the plasma along the magnetic field in each cell of the multimirror confinement system. The mixing of the counterpropagating plasma flows inside each cell leads to fast ion heating. Under the given experimental conditions, the efficiency of this heating mechanism is higher than that due to binary electron-ion collisions. The collision and mixing of the counterpropagating plasma flows is accompanied by a neutron and γ-ray burst. The measured ratio of the plasma pressure to the vacuum magnetic field pressure in these experiments reaches 0.2.
Fusion Science and Technology | 2005
V. S. Koidan; A. V. Arzhannikov; V. T. Astrelin; A. V. Burdakov; G. E. Derevyankin; V. G. Ivanenko; I. A. Ivanov; M. V. Ivantsivsky; V. V. Konyukhov; Sergei A. Kuznetsov; A. Makarov; K. I. Mekler; V. S. Nikolaev; S. V. Polosatkin; V. V. Postupaev; A. F. Rovenskikh; A. A. Shoshin; S. L. Sinitsky; Yu. S. Sulyaev; E. R. Zubairov
Main results of researches on plasma heating and confinement of dense plasma in the multimirror trap GOL-3 are presented. Recently magnetic system of the facility was converted into completely multimirror one. This results in further improvement of energy confinement time of plasma with ion temperature ~1 keV. Collective plasma heating by ~120 kJ (~8 ɷs) relativistic electron beam results in Te ~ 2 keV at ~1021 m-3 density. High Te exists for ~10 μs. To this time Ti reaches ~2 keV. Ion temperature keeps at the high level during ~1 ms. The energy confinement time sufficiently increases and a value of nτE = (1.5 [divide] 3)·1018 m-3s.
Fusion Science and Technology | 2005
V. V. Postupaev; A. V. Arzhannikov; V. T. Astrelin; A. M. Averkov; A. D. Beklemishev; A. V. Burdakov; I. A. Ivanov; V. S. Koidan; K. I. Mekler; S. V. Polosatkin; A. F. Rovenskikh; S. L. Sinitsky; E. R. Zubairov
Dense plasma heating by a relativistic electron beam and its confinement are studied in the multiple mirror trap GOL-3. Axial currents, which exist in the system, cause helical structure of the magnetic field. The safety factor q is shown to be below unity on the axis. Experimental data on the distribution and evolution of currents, structure of the magnetic field, and their influence on confinement and on MHD activity are discussed.
Physics of Plasmas | 2014
A. V. Arzhannikov; A. V. Burdakov; V. S. Burmasov; D. E. Gavrilenko; I. A. Ivanov; A. A. Kasatov; Sergei A. Kuznetsov; K. I. Mekler; S. V. Polosatkin; V. V. Postupaev; A. F. Rovenskikh; S. L. Sinitsky; V. F. Sklyarov; L. N. Vyacheslavov
The paper presents results of measurements of sub-terahertz electromagnetic emission from magnetized plasma during injection of a powerful relativistic electron beam of microsecond duration in plasma with the density of 3 × 1014 cm−3. It was found that the spectrum of the radiation concentrated in three distinct regions with high level of spectral power density. The first region is located near f1 = 100 GHz; the second one is in the vicinity of 190 GHz, and the third region is in the frequency interval f3 = 280–340 GHz. Polarization vectors of the emission in the first and third regions (f1 and f3) are directed mainly perpendicular to the magnetic field in the plasma. At the same time, the polarization of the radiation in the vicinity of f2 = 190 GHz is parallel to the magnetic field. The most likely mechanism of electromagnetic wave generation in the frequency regions f1 and f2 is the linear conversion of the plasma oscillations into the electromagnetic waves on strong gradients of the plasma density. Th...
Physics of Plasmas | 2013
V. V. Postupaev; A. V. Burdakov; I. A. Ivanov; V. F. Sklyarov; A. V. Arzhannikov; D. Ye. Gavrilenko; I. V. Kandaurov; A. A. Kasatov; V. V. Kurkuchekov; K. I. Mekler; S. V. Polosatkin; S. S. Popov; A. F. Rovenskikh; A. V. Sudnikov; Yu. S. Sulyaev; Yu. A. Trunev; L. N. Vyacheslavov
In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.
Fusion Science and Technology | 2011
V. V. Postupaev; A. V. Arzhannikov; V. T. Astrelin; V.I. Batkin; A. V. Burdakov; V. S. Burmasov; I. A. Ivanov; M. V. Ivantsivsky; K. N. Kuklin; Sergei A. Kuznetsov; M. A. Makarov; K. I. Mekler; S. V. Polosatkin; S. S. Popov; A. F. Rovenskikh; A. A. Shoshin; S. L. Sinitsky; V. F. Sklyarov; N. V. Sorokina; A. V. Sudnikov; Yu. S. Sulyaev; L. N. Vyacheslavov
Abstract The latest experimental campaign at the GOL-3 multiple-mirror trap was mainly aimed at features of heating and stability of the electron-beam-heated turbulent plasma. The discussed experiments feature a reduced-cross-section electron beam with the current decreased down to 1 ÷ 1.5 kA at the current density of ~1 kA/cm2 (the same as in the “full-scale” experiments). The hot plasma cross-section decreased correspondingly. Lowered current of the electron beam became less than the critical vacuum current. This gives the possibility to make a direct comparison of regimes with the beam injection into a neutral or a preliminary ionized deuterium. New experimental results will be presented on the beam relaxation in the plasma and on heating and stability of the reduced-cross-section plasma with low central safety factor q(0) ~ 0.3. Stabilization of some MHD modes by a controlled coupling of the plasma with an exit receiver plate was demonstrated.
Fusion Science and Technology | 2013
A. V. Burdakov; A. P. Avrorov; A. V. Arzhannikov; V. T. Astrelin; V.I. Batkin; A. D. Beklemishev; V. S. Burmasov; P. V. Bykov; G. E. Derevyankin; V. G. Ivanenko; I. A. Ivanov; M. V. Ivantsivsky; I. V. Kandaurov; A. A. Kasatov; Sergei A. Kuznetsov; V. V. Kurkuchekov; K. N. Kuklin; K. I. Mekler; S. V. Polosatkin; S. S. Popov; V. V. Postupaev; A. F. Rovenskikh; A. A. Shoshin; S. L. Sinitsky; V. F. Sklyarov; N. V. Sorokina; V. D. Stepanov; A. V. Sudnikov; Yu. S. Sulyaev; I. V. Timofeev
Novel technology of electron beam generation for plasma heating in GOL-3 was developed and for the first time used in the experiment. The distinctive features of the new beam are non-relativistic energy, medium power and sub-ms duration. The experiments were done at the following beam and plasma parameters: ~100 keV, ~10 MW, >100 μs, ~1020 m-3. The beam was safely transported through the 13-m-long deuterium-filled multiple-mirror solenoid. The plasma was created and then heated by the beam. Main physical task for the reported experiments was to reach quasi-stationary plasma conditions during the long-pulse beam injection.