I. A. Shovkovy
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. A. Shovkovy.
Nuclear Physics | 1996
V. P. Gusynin; V.A. Miransky; I. A. Shovkovy
Abstract It is shown that a constant magnetic field in 3+1 and 2+1 dimensions is a strong catalyst of dynamical chiral symmetry breaking, leading to the generation of a fermion dynamical mass even at the weakest attractive interaction between fermions. The essence of this effect is the dimensional reduction D → D − 2 in the dynamics of fermion pairing in a magnetic field. The effect is illustrated in the Nambu-Jona-Lasinio (NJL) model and QED. In the NJL model in a magnetic field, the low-energy effective action and the spectrum of long-wavelength collective excitations are derived. In QED (in ladder and improved ladder approximations) the dynamical mass of fermions (energy gap in the fermion spectrum) is determined. Possible applications of this effect and its extension to inhomogeneous field configurations are discussed.
Physics Reports | 2015
V. A. Miransky; I. A. Shovkovy
A range of quantum field theoretical phenomena driven by external magnetic fields and their applications in relativistic systems and quasirelativistic condensed matter ones, such as graphene and Dirac/Weyl semimetals, are reviewed. We start by introducing the underlying physics of the magnetic catalysis. The dimensional reduction of the low-energy dynamics of relativistic fermions in an external magnetic field is explained and its role in catalyzing spontaneous symmetry breaking is emphasized. The general theoretical consideration is supplemented by the analysis of the magnetic catalysis in quantum electrodynamics, chromodynamics and quasirelativistic models relevant for condensed matter physics. By generalizing the ideas of the magnetic catalysis to the case of nonzero density and temperature, we argue that other interesting phenomena take place. The chiral magnetic and chiral separation effects are perhaps the most interesting among them. In addition to the general discussion of the physics underlying chiral magnetic and separation effects, we also review their possible phenomenological implications in heavy-ion collisions and compact stars. We also discuss the application of the magnetic catalysis ideas for the description of the quantum Hall effect in monolayer and bilayer graphene, and conclude that the generalized magnetic catalysis, including both the magnetic catalysis condensates and the quantum Hall ferromagnetic ones, lies at the basis of this phenomenon. We also consider how an external magnetic field affects the underlying physics in a class of three-dimensional quasirelativistic condensed matter systems, Dirac semimetals. While at sufficiently low temperatures and zero density of charge carriers, such semimetals are expected to reveal the regime of the magnetic catalysis, the regime of Weyl semimetals with chiral asymmetry is realized at nonzero density...
Physics Letters B | 1995
V. P. Gusynin; V. A. Miransky; I. A. Shovkovy
Abstract It is shown that in 3 + 1 dimensions, a constant magnetic field is a catalyst of dynamical chiral symmetry breaking, leading to the generation of a fermion mass even at the weakest attractive interaction between fermions. The essence of this effect is the dimensional reduction D → D − 2(3 + 1 → 1 + 1) in the dynamics of fermion pairing in a magnetic field. The effect is illustrated in the Nambu-Jona-Lasinio model. Possible applications of this effect are briefly discussed.
Physics Letters B | 2003
I. A. Shovkovy; Mei Huang
A new, stable gapless two-flavor color superconducting phase that appears under conditions of local charge neutrality and β-equilibrium is revealed. In this phase, the symmetry of the ground state is the same as in the conventional two-flavor color superconductor. In the low-energy spectrum of this phase, however, there are only two gapped fermionic quasiparticles, and the other four quasiparticles are gapless. The origin and the basic properties of the gapless two-flavor color superconductor are discussed. This phase is a natural candidate for quark matter in cores of compact stars.
Physical Review D | 2005
Stefan B. Rüster; Verena Werth; Michael Buballa; I. A. Shovkovy; Dirk H. Rischke
We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of the Nambu\char21{}Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength.
Physical Review D | 1995
V. P. Gusynin; Vladimir A. Miransky; I. A. Shovkovy
It is shown that in
Lecture Notes in Physics | 2013
I. A. Shovkovy
2+1
Foundations of Physics | 2005
I. A. Shovkovy
dimensions, a constant magnetic field is a strong catalyst of dynamical flavor symmetry breaking, leading to generating a fermion dynamical mass even at the weakest attractive interaction between fermions. The essence of this effect is that in a magnetic field, in
Physical Review D | 2002
V. A. Miransky; I. A. Shovkovy
2+1
Physical Review D | 2004
Mei Huang; I. A. Shovkovy
dimensions, the dynamics of fermion pairing is essentially one-dimensional. The effect is illustrated in the Nambu-Jona-Lasinio model in a magnetic field. The low-energy effective action in this model is derived and the thermodynamic properties of the model are considered. The relevance of this effect for planar condensed matter systems and for