Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. C. Kettelhut is active.

Publication


Featured researches published by I. C. Kettelhut.


Journal of Ethnopharmacology | 2002

Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats.

Maria Teresa Pepato; E. H. Keller; Amanda Martins Baviera; I. C. Kettelhut; Regina Célia Vendramini; Iguatemy Lourenço Brunetti

The effects of using Bauhinia forficata leaf decoction (150 g leaf/l water; 35.2+/-7.8 ml/100 g body weight mean daily dose) as a drinking-water substitute for about 1 month on streptozotocin-diabetes (STZ-diabetes) in male Wistar rats were investigated. The physico-metabolic parameters measured were: body weight, food and liquid intake, urinary volume, hepatic glycogen, serum triglycerides and cholesterol, plasma glucose, urinary glucose and urea, and the weight of epididymal and retroperitoneal adipose tissue and soleus and extensor digitorum longus muscles. The STZ-diabetic rats treated with decoction showed a significant reduction in serum and urinary glucose and urinary urea as compared to the STZ-diabetic control, no difference being seen between decoction-treated and -untreated non-diabetic rats. The other physico-metabolic factors showed no changes in treated STZ-diabetic rats. The improvement in carbohydrate metabolism seen in the rats treated with Bauhinia forficata decoction does not appear to be linked to the inhibition of glycogenolysis or the stimulation of glycogenesis nor does it appear to act in a way similar to insulin or the sulfonylureas, although it may act by the inhibition of neoglycogenesis in a manner similar to that of the biguanides.


General and Comparative Endocrinology | 1988

Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet.

C.R. Machado; M. A R Garofalo; José Eduardo de Salles Roselino; I. C. Kettelhut; Renato H. Migliorini

The effects of starvation and of a short period of refeeding on energy-linked metabolic processes, as well as the effects of insulin administration, were investigated in an omnivorous fish (catfish, Rhamdia hilarii) previously adapted to a carbohydrate-rich diet. Following food deprivation blood sugar levels declined progressively to about 50% of fed values after 30 days. During the same period plasma free fatty acid (FFA) concentration increased twofold. Starvation resulted in reduced concentrations of lipid and glycogen in the liver and of glycogen, lipid, and protein in white muscle. However, taking into account the initial and final concentrations of tissue constituents, the liver weight, and the large fractions of body weight represented by muscle, it could be estimated that most of the energy utilized during starvation derived from the catabolism of muscle lipid and protein. Refeeding starved fishes for 48 hr induced several-fold increases in the rates of in vivo and in vitro incorporation of [14C]glucose into liver and muscle lipid and of [14C]glycine into liver and muscle protein. Incorporation of [14C]glucose into liver glycogen was also increased. However; refeeding did not affect the incorporation of labeled glucose into muscle glycogen, neither in vivo nor in vitro. Administration of pharmacological doses of insulin to normally fed catfishes resulted in marked increases in the in vivo incorporation of 14C from glucose into lipid and protein in both liver and muscle. In contrast, labeled glucose incorporation into muscle glycogen was not affected by insulin and label incorporation into liver glycogen was actually lower than that in noninjected controls.(ABSTRACT TRUNCATED AT 250 WORDS)


Brazilian Journal of Medical and Biological Research | 2001

Lack of antidiabetic effect of a Eugenia jambolana leaf decoction on rat streptozotocin diabetes

Maria Tereza Pepato; V.B.B. Folgado; I. C. Kettelhut; Iguatemy Lourenço Brunetti

Streptozotocin-diabetic rats were treated for 17 days with a decoction of Eugenia jambolana (Myrtaceae) leaves (15%, w/v) as a substitute for water. Body weight, food and fluid intake, urine volume, glycemia, urinary glucose and urea were evaluated every 5 days. The animals were sacrificed by decapitation and blood samples collected for the determination of glycemia, serum cholesterol, HDL-cholesterol, triglycerides and angiotensin-converting enzyme. The weight of adipose and muscle tissues was also determined. There were no statistically significant differences between treated and untreated rats for any of the biochemical or physiological parameters. We conclude that, at least in this experimental model, Eugenia jambolana leaf decoction has no antidiabetic activity.


Hormone and Metabolic Research | 2013

Insulin Suppresses Atrophy- and Autophagy-related Genes in Heart Tissue and Cardiomyocytes Through AKT/FOXO Signaling

Silvia Paula-Gomes; Dawit A. P. Gonçalves; Amanda Martins Baviera; Neusa Maria Zanon; Luiz C. C. Navegantes; I. C. Kettelhut

Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a.


Canadian Journal of Physiology and Pharmacology | 2010

A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats

Samyra L. Buzelle; Maísa P.SantosM.P. Santos; Amanda Martins Baviera; Carbene França Lopes; Maria Antonieta Rissato Garófalo; Luiz C. C. Navegantes; I. C. Kettelhut; Valéria Ernestânia Chaves; Nair Honda Kawashita

The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity - i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P - was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.


Brazilian Journal of Medical and Biological Research | 2000

Abnormalities of glucose metabolism in spontaneously hypertensive rats

L.M.F.B. Gouveia; I. C. Kettelhut; Milton Cesar Foss

Abnormalities in glucose metabolism and insulin action are frequently detected in patients with essential hypertension. Spontaneously hypertensive rats (SHR) have been used as an experimental model to understand this pathological condition. The objective of the present study was to assess glucose metabolism and insulin action in SHR and Wistar rats under fed and fasting conditions. Peripheral glucose utilization was estimated by kinetic studies with [6-(3)H]-glucose and gluconeogenetic activity was measured during continuous [(14)C]-bicarbonate infusion. Plasma glucose levels were higher in the SHR group. Plasma insulin levels in the fed state were higher in the SHR group (99.8 +/- 6.5 microM) than in the control group (70.4 +/- 3.6 microM). Muscle glycogen content was reduced in SHR compared to control under the various experimental conditions. Peripheral glucose utilization was slightly lower in the SHR group in the fed state (8.72 +/- 0.55 vs 9.52 +/- 0.80 mg kg(-1) min(-1) in controls). Serum free fatty acid levels, hepatic glycogen levels, hepatic phosphoenolpyruvate carboxykinase activity and gluconeogenetic activity were similar in the two groups. The presence of hyperglycemia and hyperinsulinemia and the slightly reduced peripheral glucose utilization suggest the presence of resistance to the action of insulin in peripheral tissues of SHR. Hepatic gluconeogenesis does not seem to contribute to the metabolic alterations detected in these animals.


Journal of Applied Physiology | 2013

Effect of short-term cold exposure on skeletal muscle protein breakdown in rats

Leandro H. Manfredi; Neusa Maria Zanon; Maria Antonieta Rissato Garófalo; Luiz C. C. Navegantes; I. C. Kettelhut

Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.


British Poultry Science | 2003

ß2-Agonists and cAMP inhibit protein degradation in isolated chick (Gallus domesticus) skeletal muscle

Luiz C. C. Navegantes; C.R. Machado; Neusa M. Z. Resano; Renato H. Migliorini; I. C. Kettelhut

1. The role of β2-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours. 2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective β2-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP. 3. The decrease in the rate of total protein degradation induced by 10−5 m clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10−5 m ICI 118·551, a selective β2-antagonist. 4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10−4 m dibutyryl-cAMP or isobutylmethylxanthine. 5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by β2-adrenoceptors, with the participation of a cAMP-dependent pathway.


Brazilian Journal of Medical and Biological Research | 2009

The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle

Luiz C. C. Navegantes; Amanda Martins Baviera; I. C. Kettelhut

Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of beta2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by beta2- and beta3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2000

Gluconeogenesis and P-enolpyruvate carboxykinase in liver and kidney of long-term fasted quails

D.R.S. Sartori; Maria Antonieta Rissato Garófalo; José Eduardo de Salles Roselino; I. C. Kettelhut; Renato H. Migliorini

Abstract The activity of cytoplasmic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK) in kidney and liver, and in vivo gluconeogenic activity, were determined during different phases of prolonged fasting in quails. The fasting-induced changes in the activity of kidney cytoplasmic PEPCK were positively correlated with the changes in gluconeogenesis. Both activities increased at the initial phase (I) of fasting to levels 65% to 100% higher than fed values, and decreased during the protein-sparing period (phase II), although remaining higher than in fed birds. At the catabolic final phase (III) both kidney cytoplasmic PEPCK activity and gluconeogenesis increased markedly, attaining levels 115% to 150% higher than fed values. The activity of liver cytoplasmic PEPCK, present in appreciable amounts in quails, did not change during phases I and II of fasting, but increased to levels 60% higher than fed values at the final phase (III). Plasma glucose levels at phase III did not differ significantly from those at phases I and II. In both kidney and liver the activity of the mitochondrial PEPCK was not significantly affected by fasting. The data suggest that the kidney cytoplasmic PEPCK is the main enzyme responsible for gluconeogenesis adjustments during food deprivation in quails, and that this function is complemented at the final phase by enzyme present in liver cytosol.

Collaboration


Dive into the I. C. Kettelhut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nair Honda Kawashita

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge