I-Chen Yu
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I-Chen Yu.
Journal of Clinical Investigation | 2009
Jiann-Jyh Lai; Kuo-Pao Lai; Kuang-Hsiang Chuang; Philip Chang; I-Chen Yu; Wen-Jye Lin; Chawnshang Chang
Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.
Nature Medicine | 2007
Zhiming Yang; Yu-Jia Chang; I-Chen Yu; Shuyuan Yeh; Cheng-Chia Wu; Hiroshi Miyamoto; Diane E. Merry; Gen Sobue; Lu-Min Chen; Shu-Shi Chang; Chawnshang Chang
Motor neuron degeneration resulting from the aggregation of the androgen receptor with an expanded polyglutamine tract (AR-polyQ) has been linked to the development of spinal and bulbar muscular atrophy (SBMA or Kennedy disease). Here we report that adding 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) disrupts the interaction between AR and its coregulators, and also increases cell survival by decreasing AR-polyQ nuclear aggregation and increasing AR-polyQ degradation in cultured cells. Intraperitoneal injection of ASC-J9 into AR-polyQ transgenic SBMA mice markedly improved disease symptoms, as seen by a reduction in muscular atrophy. Notably, unlike previous approaches in which surgical or chemical castration was used to reduce SBMA symptoms, ASC-J9 treatment ameliorated SBMA symptoms by decreasing AR-97Q aggregation and increasing VEGF164 expression with little change of serum testosterone. Moreover, mice treated with ASC-J9 retained normal sexual function and fertility. Collectively, our results point to a better therapeutic and preventative approach to treating SBMA, by disrupting the interaction between AR and AR coregulators.
Hepatology | 2008
Hung-Yun Lin; I-Chen Yu; Ruey-Shen Wang; Yei-Tsung Chen; Ning-Chun Liu; Saleh Altuwaijri; Cheng-Lung Hsu; Wen-Lung Ma; Jenny Jokinen; Janet D. Sparks; Shuyuan Yeh; Chawnshang Chang
Early studies demonstrated that whole‐body androgen receptor (AR)–knockout mice with hypogonadism exhibit insulin resistance. However, details about the mechanisms underlying how androgen/AR signaling regulates insulin sensitivity in individual organs remain unclear. We therefore generated hepatic AR‐knockout (H‐AR−/y) mice and found that male H‐AR−/y mice, but not female H‐AR−/− mice, fed a high‐fat diet developed hepatic steatosis and insulin resistance, and aging male H‐AR−/y mice fed chow exhibited moderate hepatic steatosis. We hypothesized that increased hepatic steatosis in obese male H‐AR−/y mice resulted from decreased fatty acid β‐oxidation, increased de novo lipid synthesis arising from decreased PPARα, increased sterol regulatory element binding protein 1c, and associated changes in target gene expression. Reduced insulin sensitivity in fat‐fed H‐AR−/y mice was associated with decreased phosphoinositide‐3 kinase activity and increased phosphenolpyruvate carboxykinase expression and correlated with increased protein‐tyrosine phosphatase 1B expression. Conclusion: Together, our results suggest that hepatic AR may play a vital role in preventing the development of insulin resistance and hepatic steatosis. AR agonists that specifically target hepatic AR might be developed to provide a better strategy for treatment of metabolic syndrome in men. (HEPATOLOGY 2008.)
Diabetes | 2007
Ning-Chun Liu; Wen-Jye Lin; Eungseok Kim; Loretta L. Collins; Hung-Yun Lin; I-Chen Yu; Janet D. Sparks; Lu-Min Chen; Yi-Fen Lee; Chawnshang Chang
OBJECTIVE—Regulation of phosphoenolpyruvate carboxykinase (PEPCK), the key gene in gluconeogenesis, is critical for glucose homeostasis in response to quick nutritional depletion and/or hormonal alteration. RESEARCH DESIGN/METHODS AND RESULTS— Here, we identified the testicular orphan nuclear receptor 4 (TR4) as a key PEPCK regulator modulating PEPCK gene via a transcriptional mechanism. TR4 transactivates the 490-bp PEPCK promoter-containing luciferase reporter gene activity by direct binding to the TR4 responsive element (TR4RE) located at −451 to −439 in the promoter region. Binding to TR4RE was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Eliminating TR4 via knockout and RNA interference (RNAi) in hepatocytes significantly reduced the PEPCK gene expression and glucose production in response to glucose depletion. In contrast, ectopic expression of TR4 increased PEPCK gene expression and hepatic glucose production in human and mouse hepatoma cells. Mice lacking TR4 also display reduction of PEPCK expression with impaired gluconeogenesis. CONCLUSIONS—Together, both in vitro and in vivo data demonstrate the identification of a new pathway, TR4 → PEPCK → gluconeogenesis → blood glucose, which may allow us to modulate metabolic programs via the control of a new key player, TR4, a member of the nuclear receptor superfamily.
Endocrinology | 2008
I-Chen Yu; Hung-Yun Lin; Ning-Chun Liu; Ruey-Shen Wang; Janet D. Sparks; Shuyuan Yeh; Chawnshang Chang
Insulin resistance occurs through an inadequate response to insulin by insulin target organs such as liver, muscle, and adipose tissue with consequent insufficient glucose uptake. In previous studies we demonstrated that whole body androgen receptor (AR) knockout (AR(-/y)) mice develop obesity and exhibit insulin and leptin resistance at advanced age. By examining adipose tissue-specific AR knockout (A-AR(-/y)) mice, we found A-AR(-/y) mice were hyperleptinemic but showed no leptin resistance, although body weight and adiposity index of A-AR(-/y) mice were identical with those of male wild-type control mice. Hypotriglyceridemia and hypocholesterolemia found in nonobese A-AR(-/y) mice suggested a beneficial effect of high leptin levels independent of fat deposition. Further examination showed that androgen-AR signaling in adipose tissue plays a direct regulatory role in leptin expression via enhanced estrogen receptor transactivation activity due to elevated intraadipose estrogens. The present study in A-AR(-/y) mice suggests a differential tissue-specific role of AR in energy balance control in males.
Diabetes | 2011
Eungseok Kim; Ning-Chun Liu; I-Chen Yu; Hung-Yun Lin; Yi-Fen Lee; Janet D. Sparks; Lu-Min Chen; Chawnshang Chang
OBJECTIVE TR4 is a nuclear receptor without clear pathophysiological roles. We investigated the roles of hepatic TR4 in the regulation of lipogenesis and insulin sensitivity in vivo and in vitro. RESEARCH DESIGN AND METHODS TR4 activity and phosphorylation assays were carried out using hepatocytes and various TR4 wild-type and mutant constructs. Liver tissues from TR4 knockout, C57BL/6, and db/db mice were examined to investigate TR4 target gene stearoyl-CoA desaturase (SCD) 1 regulation. RESULTS TR4 transactivation is inhibited via phosphorylation by metformin-induced AMP-activated protein kinase (AMPK) at the amino acid serine 351, which results in the suppression of SCD1 gene expression. Additional mechanistic dissection finds TR4-transactivated SCD1 promoter activity via direct binding to the TR4-responsive element located at −243 to −255 on the promoter region. The pathophysiological consequences of the metformin→AMPK→TR4→SCD1 pathway are examined via TR4 knockout mice and primary hepatocytes with either knockdown or overexpression of TR4. The results show that the suppression of SCD1 via loss of TR4 resulted in reduced fat mass and increased insulin sensitivity with increased β-oxidation and decreased lipogenic gene expression. CONCLUSIONS The pathway from metformin→AMPK→TR4→SCD1→insulin sensitivity suggests that TR4 may function as an important modulator to control lipid metabolism, which sheds light on the use of small molecules to modulate TR4 activity as a new alternative approach to battle the metabolic syndrome.
Diabetes | 2013
I-Chen Yu; Hung-Yun Lin; Ning-Chun Liu; Janet D. Sparks; Shuyuan Yeh; Lei-Ya Fang; Lu-Min Chen; Chawnshang Chang
Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)–mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism.
Diabetes | 2014
I-Chen Yu; Hung-Yun Lin; Janet D. Sparks; Shuyuan Yeh; Chawnshang Chang
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. Androgen-deprivation therapy (ADT) is the first-line treatment and fundamental management for men with advanced PCa to suppress functions of androgen/androgen receptor (AR) signaling. ADT is effective at improving cancer symptoms and prolonging survival. However, epidemiological and clinical studies support the notion that testosterone deficiency in men leads to the development of metabolic syndrome that increases cardiovascular disease risk. The underlying mechanisms by which androgen/AR signaling regulates metabolic homeostasis in men are complex, and in this review, we discuss molecular mechanisms mediated by AR signaling that link ADT to metabolic syndrome. Results derived from various AR knockout mouse models reveal tissue-specific AR signaling that is involved in regulation of metabolism. These data suggest that steps be taken early to manage metabolic complications associated with PCa patients receiving ADT, which could be accomplished using tissue-selective modulation of AR signaling and by treatment with insulin-sensitizing agents.
Journal of Virology | 2007
Cheng Huang; Shin C. Chang; I-Chen Yu; Yeou-Guang Tsay; Ming-Fu Chang
ABSTRACT Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.
Journal of the American Heart Association | 2016
Ping-Chang Kuo; Barbara A. Scofield; I-Chen Yu; Fen-Lei Chang; Doina Ganea; Jui-Hung Yen
Background Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon‐β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing‐remitting multiple sclerosis for more than a decade. Its anti‐inflammatory properties and well‐characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke. Methods and Results We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4+ T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain. Conclusions Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti‐inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator.