Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I-Chih Tan is active.

Publication


Featured researches published by I-Chih Tan.


Current Opinion in Biotechnology | 2009

Lymphatic imaging in humans with near-infrared fluorescence

John C. Rasmussen; I-Chih Tan; Milton V. Marshall; Caroline E. Fife; Eva M. Sevick-Muraca

While the lymphatic system is increasingly associated with diseases of prevalence, study of these diseases is difficult owing to the paucity of imaging techniques with the sensitivity and temporal resolution to discriminate lymphatic function. Herein, we review the known, pertinent features of the human lymphatic system in health and disease and set the context for a number of emerging studies that use near-infrared fluorescence imaging to non-invasively assess tumor draining lymphatic basins in cancer patients, intraoperatively guide resection of first draining lymph nodes, and to interrogate the difference between normal and aberrant lymphatic structure and function.


Open surgical oncology journal (Online) | 2010

Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update.

Milton V. Marshall; John C. Rasmussen; I-Chih Tan; Melissa B. Aldrich; Kristen E. Adams; Xuejuan Wang; Caroline E. Fife; Erik A. Maus; Latisha A. Smith; Eva M. Sevick-Muraca

Near-infrared (NIR) fluorescence imaging clinical studies have been reported in the literature with six different devices that employ various doses of indocyanine green (ICG) as a non-specific contrast agent. To date, clinical applications range from (i) angiography, intraoperative assessment of vessel patency, and tumor/metastasis delineation following intravenous administration of ICG, and (ii) imaging lymphatic architecture and function following subcutaneous and intradermal ICG administration. In the latter case, NIR fluorescence imaging may enable new discoveries associated with lymphatic function due to (i) a unique niche that is not met by any other conventional imaging technology and (ii) its exquisite sensitivity enabling high spatial and temporal resolution. Herein, we (i) review the basics of clinical NIR fluorescence imaging, (ii) survey the literature on clinical application of investigational devices using ICG fluorescent contrast, (iii) provide an update of non-invasive dynamic lymphatic imaging conducted with our FDPM device, and finally, (iv) comment on the future NIR fluorescence imaging for non-invasive and intraoperative use given recent demonstrations showing capabilities for imaging following microdose administration of contrast agent.


Biomedical Optics Express | 2010

Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema

Kristen E. Adams; John C. Rasmussen; Chinmay Darne; I-Chih Tan; Melissa B. Aldrich; Milton V. Marshall; Caroline E. Fife; Erik A. Maus; Latisha A. Smith; Renie Guilloid; Sunday Hoy; Eva M. Sevick-Muraca

Lymphedema affects up to 50% of all breast cancer survivors. Management with pneumatic compression devices (PCDs) is controversial, owing to the lack of methods to directly assess benefit. This pilot study employed an investigational, near-infrared (NIR) fluorescence imaging technique to evaluate lymphatic response to PCD therapy in normal control and breast cancer-related lymphedema (BCRL) subjects. Lymphatic propulsion rate, apparent lymph velocity, and lymphatic vessel recruitment were measured before, during, and after advanced PCD therapy. Lymphatic function improved in all control subjects and all asymptomatic arms of BCRL subjects. Lymphatic function improved in 4 of 6 BCRL affected arms, improvement defined as proximal movement of dye after therapy. NIR fluorescence lymphatic imaging may be useful to directly evaluate lymphatic response to therapy. These results suggest that PCDs can stimulate lymphatic function and may be an effective method to manage BCRL, warranting future clinical trials.


Technology in Cancer Research & Treatment | 2012

Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach.

Banghe Zhu; I-Chih Tan; John C. Rasmussen; Eva M. Sevick-Muraca

With the aid of indocyanine green (ICG), lymphatic architecture and function in both mice and humans has been successfully imaged non-invasively using near-infrared (NIR) fluorescence imaging devices. Maximal measurement sensitivity of NIR fluorescence imaging devices is needed for “first-in-humans” molecularly targeting NIR fluorescence agents that are brighter than non-specific ICG. In this study, we developed a solid phantom and measurement approach for the quantification of excitation light leakage and measurement sensitivity of NIR fluorescence imaging devices. The constructed solid phantom, consisting of quantum dots impregnated onto specularly reflective surface, shows long-term stability and can be used as a traceable fluorescence standard. With the constructed solid phantom, the intensified CCD (ICCD)-based device demonstrated more than 300% higher measurement sensitivity compared to the Electron Multiplying CCD (EMCCD) based device when integration time was maintained less than 1.0 s.


Physics in Medicine and Biology | 2012

A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

Chinmay Darne; Yujie Lu; I-Chih Tan; Banghe Zhu; John C. Rasmussen; Anne M. Smith; Shikui Yan; Eva M. Sevick-Muraca

The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.


Obesity | 2014

An abnormal lymphatic phenotype is associated with subcutaneous adipose tissue deposits in Dercum’s disease

John C. Rasmussen; Karen L. Herbst; Melissa B. Aldrich; Chinmay Darne; I-Chih Tan; Banghe Zhu; Renie Guilliod; Caroline E. Fife; Erik A. Maus; Eva M. Sevick-Muraca

Investigational, near‐infrared fluorescence (NIRF) lymphatic imaging was used to assess lymphatic architecture and contractile function in participants diagnosed with Dercums disease, a rare, poorly understood disorder characterized by painful lipomas in subcutaneous adipose tissues.


Journal of Biomedical Optics | 2013

In vivo imaging of orthotopic prostate cancer with far-red gene reporter fluorescence tomography and in vivo and ex vivo validation

Yujie Lu; Chinmay Darne; I-Chih Tan; Grace Wu; Nathaniel Wilganowski; Holly Robinson; Ali Azhdarinia; Banghe Zhu; John C. Rasmussen; Eva M. Sevick-Muraca

Abstract. Fluorescence gene reporters have recently become available for excitation at far-red wavelengths, enabling opportunities for small animal in vivo gene reporter fluorescence tomography (GRFT). We employed multiple projections of the far-red fluorescence gene reporters IFP1.4 and iRFP, excited by a point source in transillumination geometry in order to reconstruct the location of orthotopically implanted human prostate cancer (PC3), which stably expresses the reporter. Reconstruction was performed using a linear radiative-transfer-based regularization-free tomographic method. Positron emission tomography (PET) imaging of a radiolabeled antibody-based agent that targeted epithelial cell adhesion molecule overexpressed on PC3 cells was used to confirm in vivo GRFT results. Validation of GRFT results was also conducted from ex vivo fluorescence imaging of resected prostate tumor. In addition, in mice with large primary prostate tumors, a combination of GRFT and PET showed that the radiolabeled antibody did not penetrate the tumor, consistent with known tumor transport limitations of large (∼150  kDa) molecules. These results represent the first tomography of a living animal using far-red gene reporters.


Biomedical Optics Express | 2014

Toward nodal staging of axillary lymph node basins through intradermal administration of fluorescent imaging agents

Funda Meric-Bernstam; John C. Rasmussen; Savitri Krishnamurthy; I-Chih Tan; Banghe Zhu; Jamie L. Wagner; Gildy Babiera; Elizabeth A. Mittendorf; Eva M. Sevick-Muraca

As part of a proof-of-concept study for future delivery of targeted near-infrared fluorescent (NIRF) tracers, we sought to assess the delivery of micrograms of indocyanine green to all the axillary lymph nodes following intraparenchymal breast injections and intradermal arm injections in 20 subjects with advanced breast carcinoma and undergoing complete axillary lymph node dissection. Lymphatic vessels and nodes were assessed in vivo. Ex vivo images demonstrated that 87% of excised lymph nodes, including 81% of tumor-positive lymph nodes, were fluorescent. Future clinical studies using microdose amounts of tumor-targeting NIRF contrast agents may demonstrate improved surgical intervention with reduced morbidity.


Journal of Biomedical Optics | 2011

Improvement of fluorescence-enhanced optical tomography with improved optical filtering and accurate model-based reconstruction algorithms

Yujie Lu; Banghe Zhu; Chinmay Darne; I-Chih Tan; John C. Rasmussen; Eva M. Sevick-Muraca

The goal of preclinical fluorescence-enhanced optical tomography (FEOT) is to provide three-dimensional fluorophore distribution for a myriad of drug and disease discovery studies in small animals. Effective measurements, as well as fast and robust image reconstruction, are necessary for extensive applications. Compared to bioluminescence tomography (BLT), FEOT may result in improved image quality through higher detected photon count rates. However, background signals that arise from excitation illumination affect the reconstruction quality, especially when tissue fluorophore concentration is low and/or fluorescent target is located deeply in tissues. We show that near-infrared fluorescence (NIRF) imaging with an optimized filter configuration significantly reduces the background noise. Model-based reconstruction with a high-order approximation to the radiative transfer equation further improves the reconstruction quality compared to the diffusion approximation. Improvements in FEOT are demonstrated experimentally using a mouse-shaped phantom with targets of pico- and subpico-mole NIR fluorescent dye.


Biomedical Optics Express | 2012

Automated analysis of investigational near-infrared fluorescence lymphatic imaging in humans.

Jingdan Zhang; Shaohua Kevin Zhou; Xiaoyan Xiang; Merrick L. Bautista; Blake A. Niccum; Gabriel S. Dickinson; I-Chih Tan; Wenyaw Chan; Eva M. Sevick-Muraca; John C. Rasmussen

ALFIA (Automated Lymphatic Function Imaging Analysis), an algorithm providing quantitative analysis of investigational near-infrared fluorescence lymphatic images, is described. Images from nine human subjects were analyzed for apparent lymphatic propagation velocities and propulsion periods using manual analysis and ALFIA. While lymphatic propulsion was more easily detected using ALFIA than with manual analysis, statistical analyses indicate no significant difference in the apparent lymphatic velocities although ALFIA tended to calculate longer propulsion periods. With the base ALFIA algorithms validated, further automation can now proceed to provide a clinically relevant analytic tool for quantitatively assessing lymphatic function in humans.

Collaboration


Dive into the I-Chih Tan's collaboration.

Top Co-Authors

Avatar

John C. Rasmussen

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Eva M. Sevick-Muraca

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Caroline E. Fife

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chinmay Darne

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Banghe Zhu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Erik A. Maus

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Milton V. Marshall

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Melissa B. Aldrich

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Yujie Lu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Latisha A. Smith

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge