I-Chung Lu
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I-Chung Lu.
Rapid Communications in Mass Spectrometry | 2013
Ming-Tsang Tsai; Sheng Lee; I-Chung Lu; Kuan Yu Chu; Chi-Wei Liang; Chih Hao Lee; Yuan T. Lee; Chi-Kung Ni
RATIONALE In most previous studies, the ratios of desorbed ions and neutrals from matrix-assisted laser desorption/ionization (MALDI) were measured outside the common MALDI conditions. In this work, we measured the ratios under common MALDI conditions. METHODS Ions were detected using a time-of-flight mass spectrometer in combination with a time-gated ion imaging detector. Mass-resolved desorbed neutral molecules at different angles and velocities were measured using a modified crossed molecular beam apparatus. RESULTS The upper limit of the ion-to-neutral ratio from pure 2,5-dihydroxybenzoic acid (25DHB) is 4 × 10(-9) at laser fluence 40 J/m(2), it increases to 3 × 10(-7) at laser fluence 250 J/m(2). The ratios of matrix from the mixture of 25DHB and analyte remain in the same order of magnitude as pure 25DHB. However, the ratio of analyte depends strongly on the analyte. Values as large as 10(-3)-10(-4) for bradykinin and as small as <10(-8) for glycine were observed at laser fluence ~100 J/m(2). CONCLUSION The ion-to-neutral ratios of 25DHB matrix measured in this work are much smaller than some of the values reported in previous work using different methods and/or under different MALDI conditions.
Journal of the American Society for Mass Spectrometry | 2014
Kuan Yu Chu; Sheng Lee; Ming-Tsang Tsai; I-Chung Lu; Yuri A. Dyakov; Yin Hung Lai; Yuan-Tseh Lee; Chi-Kung Ni
AbstractOne of the reasons that thermally induced reactions are not considered a crucial mechanism in ultraviolet matrix-assisted laser desorption ionization (UV-MALDI) is the low ion-to-neutral ratios. Large ion-to-neutral ratios (10–4) have been used to justify the unimportance of thermally induced reactions in UV-MALDI. Recent experimental measurements have shown that the upper limit of the total ion-to-neutral ratio is approximately 10–7 at a high laser fluence and less than 10–7 at a low laser fluence. Therefore, reexamining the possible contributions of thermally induced reactions in MALDI may be worthwhile. In this study, the concept of polar fluid was employed to explain the generation of primary ions in MALDI. A simple model, namely thermal proton transfer, was used to estimate the ion-to-neutral ratios in MALDI. We demonstrated that the theoretical calculations of ion-to-neutral ratios exhibit the same trend and similar orders of magnitude compared with those of experimental measurements. Although thermal proton transfer may not generate all of the ions observed in MALDI, the calculations demonstrated that thermally induced reactions play a crucial role in UV-MALDI. Figureᅟ
Reviews in Analytical Chemistry | 2015
I-Chung Lu; Chuping Lee; Yuan-Tseh Lee; Chi-Kung Ni
In past studies, mistakes in determining the ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) were made because an inappropriate ion-to-neutral ratio was used. The ion-to-neutral ratio of the analyte differs substantially from that of the matrix in MALDI. However, these ratios were not carefully distinguished in previous studies. We begin by describing the properties of ion-to-neutral ratios and reviews early experimental measurements. A discussion of the errors committed in previous theoretical studies and a comparison of recent experimental measurements follow. We then describe a thermal proton transfer model and demonstrate how the model appropriately describes ion-to-neutral ratios and the total ion intensity. Arguments raised to challenge thermal ionization are then discussed. We demonstrate how none of the arguments are valid before concluding that thermal proton transfer must play a crucial role in the ionization process of MALDI.
Journal of the American Society for Mass Spectrometry | 2015
I-Chung Lu; Kuan Yu Chu; Chih-Yuan Lin; Shang-Yun Wu; Yuri A. Dyakov; Jien-Lian Chen; Angus Gray-Weale; Yuan-Tseh Lee; Chi-Kung Ni
AbstractThe ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI. Graphical Abstractᅟ
Rapid Communications in Mass Spectrometry | 2014
Hou-Yu Lin; Botao Song; I-Chung Lu; Kuo-Tung Hsu; Chih-Yu Liao; Yin-Yu Lee; Chien-Ming Tseng; Yuan-Tseh Lee; Chi-Kung Ni
RATIONALE Energy pooling has been suggested as the key process for generating the primary ions during ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI). In previous studies, decreases in fluorescence quantum yields as laser fluence increased for 2-aminobenzoic acid, 2,5-dihydroxybenzoic acid (2,5-DHB), and 3-hydroxypicolinic acid were used as evidence of energy pooling. This work extends the research to other matrices and addresses whether energy pooling is a universal property in UV-MALDI. METHODS Energy pooling was investigated in a time-resolved fluorescence experiment by using a short laser pulse (355 nm, 20 ps pulse width) for excitation and a streak camera (1 ps time resolution) for fluorescence detection. RESULTS The excited-state lifetime of 2,5-DHB decreased with increases in laser fluence. This suggests that a reaction occurs between two excited molecules, and that energy pooling may be one of the possible reactions. However, the excited-state lifetime of 2,4,6-trihydroxyacetophenone (THAP) did not change with increases in laser fluence. The upper limit of the energy pooling rate constant for THAP is estimated to be approximately 100-500 times smaller than that of 2,5-DHB. CONCLUSIONS The small energy pooling rate constant for THAP indicates that the potential contribution of the energy pooling mechanism to the generation of THAP matrix primary ions should be reconsidered.
Journal of Chemical Physics | 2014
Hou-Yu Lin; Hsu Chen Hsu; I-Chung Lu; Kuo-Tung Hsu; Chih-Yu Liao; Yin-Yu Lee; Chien-Ming Tseng; Yuan-Tseh Lee; Chi-Kung Ni
Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S1-S1 annihilation might be a key process in the generation of primary ions. This study investigates S1-S1 annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S1-S1 annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S1) in five of these matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S1-S1 annihilation was a possible reaction. Among these five matrices, no S1-S1 annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S1-S1 annihilation. The results indicate that the proposal of S1-S1 annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.
Journal of Mass Spectrometry | 2016
Jien-Lian Chen; Chuping Lee; I-Chung Lu; Chia-Lung Chien; Yuan-Tseh Lee; Wei-Ping Hu; Chi-Kung Ni
Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mainly generate protonated ions from peptides and proteins but sodiated (or potassiated) ions from carbohydrates. The ion intensities of sodiated (or potassiated) carbohydrates generated by ESI and MALDI are generally lower than those of protonated peptides and proteins. Ab initio calculations and transition state theory were used to investigate the reasons for the low detection sensitivity for underivatized carbohydrates. We used glucose and cellobiose as examples and showed that the low detection sensitivity is partly attributable to the following factors. First, glucose exhibits a low proton affinity. Most protons generated by ESI or MALDI attach to water clusters and matrix molecules. Second, protonated glucose and cellobiose can easily undergo dehydration reactions. Third, the sodiation affinities of glucose and cellobiose are small. Some sodiated glucose and cellobiose dissociate into the sodium cations and neutral carbohydrates during ESI or MALDI process. The increase of detection sensitivity of carbohydrates in mass spectrometry by various methods can be rationalized according to these factors. Copyright
Journal of Physical Chemistry B | 2014
I-Chung Lu; Chuping Lee; Hui-Yuan Chen; Hou-Yu Lin; Sheng-Wei Hung; Yuri A. Dyakov; Kuo-Tung Hsu; Chih-Yu Liao; Yin-Yu Lee; Chien-Ming Tseng; Yuan-Tseh Lee; Chi-Kung Ni
The ionization mechanism of ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) was investigated by measuring the total cation intensity (not including sodiated and potasiated ions) as a function of analyte concentration (arginine, histidine, and glycine) in a matrix of 2,4,6-trihydroxyacetophenone (THAP). The total ion intensity increased up to 55 times near the laser fluence threshold as the arginine concentration increased from 0% to 1%. The increases were small for histidine, and a minimal increase occurred for glycine. Time-resolved fluorescence intensity was employed to investigate how analytes affected the energy pooling of the matrix. No detectable energy pooling was observed for pure THAP and THAP/analyte mixtures. The results can be described by using a thermal proton transfer model, which suggested that thermally induced proton transfer is crucial in the primary ion generation in UV-MALDI.
Journal of the American Society for Mass Spectrometry | 2016
Chuping Lee; I-Chung Lu; Hsu Chen Hsu; Hou-Yu Lin; Sheng-Ping Liang; Yuan-Tseh Lee; Chi-Kung Ni
AbstractIn a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstractᅟ
Rapid Communications in Mass Spectrometry | 2014
Hsu Chen Hsu; I-Chung Lu; Pei-Hsuan Lin; Yuri A. Dyakov; Arnab Bagchi; Chih-Yuan Lin; Sheng-Wei Hung; Yuan-Tseh Lee; Chi-Kung Ni
RATIONALE Among the six positional isomers of dihydroxybenzoic acid (DHB), 2,5-DHB is a more favorable matrix for use in matrix-assisted laser desorption/ionization (MALDI) than the other isomers because of its high ion-generation efficiency at 337 and 355 nm. The generation of hydroquinone or p-benzoquinone through the decarboxylation of 2,5-DHB has been suggested to play a crucial role in the ion-generation efficiency of 2,5-DHB. METHODS The mass spectra of desorbed neutrals generated from MALDI were measured using electron impact ionization (70 eV) and a quadrupole mass spectrometer and vacuum ultraviolet (118 nm) photoionization and a time-of-flight mass spectrometer. The mass spectra of desorbed ions generated from MALDI were investigated using a time-of-flight mass spectrometer. The dissociation barrier height and dissociation rate of decarboxylation were calculated by an ab initio method and RRKM theory. RESULTS Decarboxylation of neutral 2,5-DHB and 2,5-DHB cations was not observed. Theoretical calculations indicated that decarboxylation of neutral 2,5-DHB and 2,5-DHB cations is too slow to occur. CONCLUSIONS The high ion-generation efficiency of the 2,5-DHB matrix at 337 and 355 nm is not related to decarboxylation.