Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. D. Godwin is active.

Publication


Featured researches published by I. D. Godwin.


Plant Cell Reports | 1991

The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species

I. D. Godwin; Gordon Todd; B. V. Ford-Lloyd; H. John Newbury

SummaryExpiants of five plant species (Allium cepa, Antirrhinum majus, Brassica campestris. Glycine max, and Nicotiana tabacum) were co-cultivated with three Agrobacterium tumefaciens strains under different conditions to assess the effects of acetosyringone and medium pH on strain virulence. Tumours were incited on all dicotyledonous species by strains N2/73 and A281. The presence of acetosyringone during co-cultivation generally enhanced the virulence of these strains, most markedly N2/73 on A. majus and G. max, and A281 on G. max. Strain Ach5 was virulent only on N. tabacum in the absence of acetosyringone, which, when present, extended the host range to include A. majus. There was evidence to suggest that acetosyringone may suppress virulence in some strain/plant species interactions. Virulence was affected in some cases by medium pH, but there was no general effect across plant species.


Theoretical and Applied Genetics | 2003

Prediction of hybrid performance in grain sorghum using RFLP markers

David Jordan; Y. Z. Tao; I. D. Godwin; R. G. Henzell; Matthew A. Cooper; C. L. McIntyre

Abstract.Heterosis is an important component of hybrid yield performance. Identifying high yielding hybrids is expensive and involves testing large numbers of hybrid combinations in multi-environment trials. Molecular marker diversity has been proposed as a more efficient method of selecting superior combinations. The aim of this study was to investigate the value of molecular marker-based distance information to identify high yielding grain sorghum hybrids in Australia. Data from 48 trials were used to produce hybrid performance-estimates for four traits (yield, height, maturity and stay green) for 162 hybrid combinations derived from 70 inbred parent lines. Each line was screened with 113 mapped RFLP markers. The Rogers distances between the parents of each hybrid were calculated from the marker information on a genome basis and individually for each of the ten linkage groups of sorghum. Some of the inbred parents were related so the hybrids were classified into 75 groups with each group containing individual hybrids that showed similar patterns of Rogers distances across linkage groups. Correlations between hybrid-group performance and hybrid-group Rogers distances were calculated. A significant correlation was observed between whole genome-based Rogers distance and yield (r = 0.42). This association is too weak to be of value for identifying superior hybrid combinations. One reason for the generally poor association between parental genetic diversity and yield may be that important QTLs influencing heterosis are located in particular chromosome regions and not distributed evenly over the genome. Variation in the sign and magnitude of correlations between Rogers distance and hybrid-group performance for particular linkage groups observed in this study support this hypothesis. The concept of using diversity on individual linkage groups to predict performance was explored. Using data from just two linkage groups 38% of the variation in hybrid performance for grain yield could be explained. A model combining phenotypic trait data and parental diversity on particular linkage groups explained 71% of the variation in grain yield and has potential for use in the selection of heterotic hybrids.


Archive | 2010

Transgenic Plants for Abiotic Stress Resistance

Margaret C. Jewell; Bradley C. Campbell; I. D. Godwin

Modern agricultural crop production relies on the growth of a few of the worlds plant species selected for their superior qualities and suitability as food, animal feed, fiber or industrial end uses. Centuries of selection and, more recently, scientific breeding for adaptation to biotic and abiotic stresses have been necessary to improve yield, yield stability, and product quality in agricultural species.


Euphytica | 2007

An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp bicolor (L.) Moench, using AFLP markers

Kimberley B. Ritter; C. Lynne McIntyre; I. D. Godwin; David Jordan; Scott C. Chapman

Compared to grain sorghums, sweet sorghums typically have lower grain yield and thick, tall stalks which accumulate high levels of sugar (sucrose, fructose and glucose). Unlike commercial grain sorghum (S. bicolor ssp. bicolor) cultivars, which are usually F1 hybrids, commercial sweet sorghums were selected as wild accessions or have undergone limited plant breeding. Although all sweet sorghums are classified within S. bicolor ssp. bicolor, their genetic relationship with grain sorghums is yet to be investigated. Ninety-five genotypes, including 31 sweet sorghums and 64 grain sorghums, representing all five races within the subspecies bicolor, were screened with 277 polymorphic amplified fragment length polymorphism (AFLP) markers. Cluster analysis separated older sweet sorghum accessions (collected in mid 1800s) from those developed and released during the early to mid 1900s. These groups were emphasised in a principle component analysis of the results such that sweet sorghum lines were largely distinguished from the others, particularly by a group of markers located on sorghum chromosomes SBI-08 and SBI-10. Other studies have shown that QTL and ESTs for sugar-related traits, as well as for height and anthesis, map to SBI-10. Although the clusters obtained did not group clearly on the basis of racial classification, the sweet sorghum lines often cluster with grain sorghums of similar racial origin thus suggesting that sweet sorghum is of polyphyletic origin within S. bicolor ssp. bicolor


Australian Journal of Botany | 1995

Somaclonal Variation in Rice ̵2 Drought Tolerance and Other Agronomic Characters

S. W. Adkins; R. Kunanuvatchaidach; I. D. Godwin

The ability to withstand drought was studied in R(2) families raised by self-pollination from 149 R(1) plants regenerated from callus of mature rice seed (cvs FR13A, Kurkaruppan, Khao Dawk Mali 105, Nam Sagui 19, and Calrose 76). Compared to parental controls, significant improvement in drought tolerance as assessed by dry weight production, was found in 6% of the cv. FR13A families, but not in any of Kurkaruppan or Khao Dawk Mali 105 families tested in a controlled-temperature glasshouse. When a similar study was undertaken using an in vitro selection step (using polyethylene glycol), significant improvement in drought tolerance was found in 6% of Khao Dawk Mali 105 families, but not in any of the Nam Sagui 19 families. No improvements were noted in this latter study when in vitro selection was not used. Variation in other agronomically important characters was observed in the R(2) families grown under similar, but well-watered, environmental conditions.


In Vitro Cellular & Developmental Biology – Plant | 2001

The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum

Jason A. Able; Carl Rathus; I. D. Godwin

SummaryThis report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding β-glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (rs=0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actinl and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actinl and CaMV 35S constructs. Stable callus sectors (on 2 mg 1−1 bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.


Crop & Pasture Science | 2000

Two genetic linkage maps of mungbean using RFLP and RAPD markers.

Christopher J. Lambrides; R. J. Lawn; I. D. Godwin; John M. Manners; B. C. Imrie

Two genetic linkage maps of mungbean derived from the cross Berken ACC 41 are reported. The F2 map constructed from 67 individuals consisted of 110 markers (52 RFLP and 56 RAPD) that grouped into 12 linkage groups. The linked markers spanned a total map distance of 758.3 cM. A recombinant inbred (RI) population derived from the 67 F2 individuals was used for the generation of an additional linkage map. The RI map, composed entirely of RAPD markers, consisted of 115 markers in 12 linkage groups. The linked markers spanned a total map distance of 691.7 cM. Using a framework set of RFLP markers, the F2 map was compared with another F2 mungbean map constructed in Minnesota. In general, the order of these markers was consistent between maps. Segregation distortion was observed for some markers. 14.5% (16/110) of mapped F2 markers and 24% (28/115) of mapped RI markers segregated with distorted ratios. Segregation distortion occurred in each successive generation after the F2 . The regions of distortion identified in the Australian maps did not coincide with regions of the Minnesota map.


Crop & Pasture Science | 2005

Identification of quantitative trait loci for resistance to two species of root-lesion nematode (Pratylenchus thornei and P. neglectus) in wheat

R. S. Zwart; J. P. Thompson; I. D. Godwin

Pratylenchus thornei and P. neglectus are two species of root-lesion nematode that cause substantial yield losses in wheat. No commercially available wheat variety has resistance to both species. A doubled-haploid population developed from a cross between the synthetic hexaploid wheat line CPI133872 and the bread wheat Janz was used to locate and tag quantitative trait loci (QTLs) associated with resistance to both P. thornei and P. neglectus. Wheat plants were inoculated with both species of nematode in independent replicated glasshouse trials repeated over 2 years. Known locations of wheat microsatellite markers were used to construct a framework map. After an initial single-marker analysis to detect marker-trait linkages, chromosome regions associated with putative QTLs were targetted with microsatellite markers to increase map density in the chromosome regions of interest. In total, 148 wheat microsatellite markers and 21 amplified fragment length polymorphism markers were mapped. The codominant microsatellite marker Xbarc183 on the distal end of chromosome 6DS was allelic for resistance to both P. thornei and P. neglectus. The QTL were designated QRlnt.lrc-6D.1 and QRlnn.lrc-6D.1, for the 2 traits, respectively. The allele inherited from CPI133872 explained 22.0-24.2% of the phenotypic variation for P. thornei resistance, and the allele inherited from Janz accounted for 11.3-14.0% of the phenotypic variation for P. neglectus resistance. Composite interval mapping identified markers that flank a second major QTL on chromosome 6DL (QRlnt.lrc-6D.2) that explained 8.3-13.4% of the phenotypic variation for P. thornei resistance. An additional major QTL associated with P. neglectus resistance was detected on chromosome 4DS (QRlnn.lrc-4D.1) and explained a further 10.3-15.4% of the phenotypic variation. The identification and tagging of nematode resistance genes with molecular markers will allow appropriate allele combinations to be selected, which will aid the successful breeding of wheat with dual nematode resistance.


Theoretical and Applied Genetics | 1994

Interpretation of randomly amplified polymorphic DNA marker data for fingerprinting sweet potato (Ipomoea batatas L.) genotypes

A. G. Connolly; I. D. Godwin; Matthew A. Cooper; I. H. DeLacy

In this paper we present a method for the generation of randomly amplified polymorphic DNA (RAPD) markers for sweet potato. These were applied to produce genetic fingerprints of six clonal cultivars and to estimate genetic distances between these cultivars. The level of polymorphism within the species was extremely high. From the 36-decamer random primers used, 170 fragments were amplified, of which 132 (77.6%) were polymorphic. Ten primers resulted in no detected amplification. Of the remaining 26 primers for which amplification was achieved, only one did not reveal polymorphism. Six primers used alone enabled the discrimination of all six genotypes. Pattern analysis, which employed both a classification and ordination method, enabled the grouping of cultivars and the identification of primers which gave greatest discrimination among the cultivars.


PLOS ONE | 2014

The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas

Simon Haberle; David M. J. S. Bowman; Rewi M. Newnham; Fay H. Johnston; Paul J. Beggs; Jeroen Buters; Bradley C. Campbell; Bircan Erbas; I. D. Godwin; Brett J. Green; Alfredo R. Huete; Alison K. Jaggard; Danielle E. Medek; F. Murray; Ed Newbigin; Michel Thibaudon; Don Vicendese; Grant J. Williamson; Janet M. Davies

The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.

Collaboration


Dive into the I. D. Godwin's collaboration.

Top Co-Authors

Avatar

David Jordan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. W. Adkins

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Fukai

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Peter J. Prentis

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

C. O. Rathus

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Guoquan Liu

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge