Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I-Hsun Li is active.

Publication


Featured researches published by I-Hsun Li.


Nuclear Medicine and Biology | 2012

Characterization of 4-[ 18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: A dynamic study

Yu-An Chen; Wen-Sheng Huang; Yaoh-Shiang Lin; Cheng-Yi Cheng; Ren-Shyan Liu; Shyh-Jen Wang; I-Hsun Li; San-Yuan Huang; Chyng-Yann Shiue; Cheng-Yu Chen; Kuo-Hsing Ma

INTRODUCTION Serotonin transporter (SERT) has been associated with many psychiatric diseases. This study investigated the biodistribution of a serotonin transporter imaging agent, N,N-dimethyl-2-(2-amino-4-(18)F-fluorophenylthio)benzylamine (4-[(18)F]-ADAM), in nonhuman primate brain using positron emission tomography (PET). METHODS Six and four Macaca cyclopis monkeys were used to determine the transit time (i.e., time necessary to reach biodistribution equilibrium) and the reproducibility of 4-[(18)F]-ADAM biodistribution in the brain, respectively. The sensitivity and specificity of 4-[(18)F]-ADAM binding to SERT were evaluated in one monkey challenged with different doses of fluoxetine and one monkey treated with 3,4-methylendioxymethamphetamine (MDMA). Dynamic PET imaging was performed for 3 h after 4-[(18)F]-ADAM intravenous bolus injection. The specific uptake ratios (SURs) in the midbrain (MB), thalamus (TH), striatum (ST) and frontal cortex (FC) were calculated. RESULTS The distribution of 4-[(18)F]-ADAM reached equilibrium 120-150 min after injection. The mean SURs were 2.49 ± 0.13 in MB, 1.59 ± 0.17 in TH, 1.35 ± 0.06 in ST and 0.34 ± 0.03 in FC, and the minimum variability was shown 120-150 min after 4-[(18)F]-ADAM injection. Using SURs and intraclass coefficient of correlation, the test/retest variability was under 8% and above 0.8, respectively, in SERT-rich areas. Challenge with fluoxetin (0.75-2 mg) dose-dependently inhibited the SURs in various brain regions. 4-[(18)F]-ADAM binding was markedly reduced in the brain of an MDMA-treated monkey compared to that in brains of normal controls. CONCLUSION 4-[(18)F]-ADAM appears to be a highly selective radioligand for imaging SERT in monkey brain.


PLOS ONE | 2014

Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy')--induced neurotoxicity in cultured cortical neurons.

I-Hsun Li; Kuo-Hsing Ma; Shao-Ju Weng; Shiang-Suo Huang; Chang-Min Liang; Yuahn-Sieh Huang

Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.


NeuroImage | 2013

Investigating the effects of noise-induced hearing loss on serotonin transporters in rat brain using 4-[18F]-ADAM/small animal PET.

Hsiao-Hsien Kang; Chih-Hung Wang; Hsin-Chien Chen; I-Hsun Li; Cheng-Yi Cheng; Ren-Shyan Liu; Wen-Sheng Huang; Chyng-Yann Shiue; Kuo-Hsing Ma

The serotonin transporter (SERT) is an important marker of the status of serotonergic neurons. The main function of SERT is to regulate the serotonin concentration in the synapse. Recent studies have shown that SERT is expressed in the central auditory pathway and may play a role in the auditory process. However, little is known about the effects of noise on the cerebral serotonin system. In this study, we explored the status of brain SERT in a rat model of noise-induced hearing loss using 4-[(18)F]-ADAM (a SERT imaging agent) and small animal positron emission tomography (PET) imaging. Male Sprague Dawley rats were exposed to an 8 kHz noise at 118 dB sound pressure level for 3.5h. An auditory brainstem response test and 4-[(18)F]-ADAM/small animal PET were performed at different time points after noise exposure. The specific uptake ratios (SURs) for 4-[(18)F]-ADAM were calculated from the PET imaging data in six brain regions. Immunohistochemistry and surface preparation of the cochleae were performed 30 days after noise exposure. Our data clearly showed that the hearing and cochlear outer hair cells of the rats were lost after noise exposure. In the PET study, the SURs of SERT were markedly reduced by 35%-58% in various brain regions one day after noise exposure. The decrement remained on days 8 and 15 and was approximately 26%-48% on day 29. The distribution and intensity of SERT immunostaining in the brain paralleled the PET imaging data. These results suggest that noise-induced hearing loss involves a reduction in SERT expression in various regions of the rat brain and that changes in SERT are detectable by 4-[(18)F]-ADAM/small animal PET in vivo.


Cell Transplantation | 2013

PET imaging of serotonin transporters with 4-[18F]-ADAM in a Parkinsonian rat model.

Shao-Ju Weng; Chyng-Yann Shiue; Wen-Sheng Huang; Cheng-Yi Cheng; San-Yuan Huang; I-Hsun Li; Chih-Chieh Tao; Ta-Kai Chou; Mei-Hsiu Liao; Yung-Ping Chang; Kuo-Hsing Ma

This study was undertaken to address the effects of fetal mesencephalic tissue transplantation on the serotonin system in a rat model of Parkinsons disease (PD) while also investigating the usefulness of 4-[18F]-ADAM (a serotonin transporter imaging agent) coupled with micro-PET for imaging serotonin transporters (SERTs). A PD model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of the nigrostriatal pathway, while cell transplantation was performed via intrastriatal injection of mesencephalic brain tissue dissected from embryonic (E14) rats. The 4-[18F]-ADAM/micro-PET scanning was performed following both 6-OHDA lesioning and transplantation. Immunohistochemistry (IHC) studies were also performed following the final PET scan, and the results were compared to show a 17–43% decrease in the specific uptake ratio (SUR) and a 23–52% decrease in serotonin transporter immunoreactivity (SERT-ir) within various brain regions on the lesioned side. The number of methamphetamine-induced rotations also decreased significantly at the 4th week postgraft. In addition, striatal SUR and the SERT-ir levels were restored to 77% and 83% 5 weeks postgraft. These results suggest that Parkinsons disease also affects the serotonergic system, while both the dopaminergic and serotonergic systems can be partially restored in a rat model of PD after E14 mesencephalic tissue transplantation. In addition, we have also determined that 4-[18F]-ADAM/micro-PET can be used to detect serotonergic neuron loss, monitor the progress of Parkinsons disease, and oversee the effectiveness of therapy.


Nuclear Medicine and Biology | 2009

Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

I-Hsun Li; Wen-Sheng Huang; Chin-Bin Yeh; Mei-Hsiu Liao; Chia-Chieh Chen; Lie-Hang Shen; Jiang-Chuan Liu; Kuo-Hsing Ma

INTRODUCTION Parkinsons disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. METHODS Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [(99m)Tc]TRODAT-1 (a dopamine transporter imaging agent) and [(123)I]ADAM (a serotonin transporter imaging agent). RESULTS The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [(99m)Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [(123)I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. CONCLUSIONS Our results suggest that dual-isotope SPECT using [(99m)Tc]TRODAT-1 and [(123)I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.


Cytotherapy | 2014

Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells

Chang-Min Liang; Shao-Ju Weng; Tung-Han Tsai; I-Hsun Li; Pin-Hui Lu; Kuo-Hsing Ma; Ming-Cheng Tai; Jiann-Torng Chen; Cheng-Yi Cheng; Yuahn-Sieh Huang

BACKGROUND AIMS The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. METHODS Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. RESULTS Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. CONCLUSIONS L-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.


Neurotoxicology | 2016

Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity

I-Hsun Li; Kuo-Hsing Ma; Tzu-Jen Kao; Yang-Yi Lin; Shao-Ju Weng; Ting-Yin Yen; Lih-Chi Chen; Yuahn-Sieh Huang

It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth.


European Neuropsychopharmacology | 2016

Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[18F]-ADAM/small-animal PET study

Jui-Hu Shih; Kuo-Hsing Ma; Chien-Fu F. Chen; Cheng-Yi Cheng; Li-Heng Pao; Shao-Ju Weng; Yuahn-Sieh Huang; Chyng-Yann Shiue; Ming-Kung Yeh; I-Hsun Li

The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA.


Cell Transplantation | 2016

PET Imaging of Serotonin Transporters with 4-[18F]-ADAM in a Parkinsonian Rat Model with Porcine Neural Xenografts:

Chuang-Hsin Chiu; I-Hsun Li; Shao-Ju Weng; Yuahn-Sieh Huang; Shinn-Chih Wu; Ta-Kai Chou; Wen-Sheng Huang; Mei-Hsiu Liao; Chyng-Yann Shiue; Cheng-Yi Cheng; Kuo-Hsing Ma

Parkinsons disease (PD) is a neurodegenerative disease characterized by a loss of dopaminergic neurons in the nigrostriatal pathway. Apart from effective strategies to halt the underlying neuronal degeneration, cell replacement now offers novel prospects for PD therapy. Porcine embryonic neural tissue has been considered an alternative source to human fetal grafts in neurodegenerative disorders because its use avoids major practical and ethical issues. This study was undertaken to evaluate the effects of embryonic day 27 (E27) porcine mesencephalic tissue transplantation in a PD rat model using animal positron emission tomography (PET) coupled with 4-[18F]-ADAM, a serotonin transporter (SERT) imaging agent. The parkinsonian rat was induced by injecting 6-hydroxydopamine into the medial forebrain bundle (MFB) of the right nigrostriatal pathway. The apomorphine-induced rotation behavioral test and 4-[18F]-ADAM/animal PET scanning were carried out following 6-OHDA lesioning. At the second week following 6-OHDA lesioning, the parkinsonian rat rotates substantially on apomorphine-induced contralateral turning. In addition, the mean striatal-specific uptake ratio (SUR) of 4-[18F]-ADAM decreased by 44%. After transplantation, the number of drug-induced rotations decreased markedly, and the mean SUR of 4-[18F]-ADAM and the level of SERT immunoreactivity (SERT-ir) in striatum were partially restored. The mean SUR level was restored to 71% compared to that for the contralateral intact side, which together with the abundant survival of tyrosine hydroxylase (TH) neurons accounted for functional recovery at the fourth week postgraft. In regard to the extent of donor-derived cells, we found the neurons of the xenografts from E27 transgenic pigs harboring red fluorescent protein (RFP) localized with TH-ir cells and SERT-ir in the grafted area. Thus, transplanted E27 porcine mesencephalic tissue may restore dopaminergic and serotonergic systems in the parkinsonian rat. The 4-[18F]-ADAM/animal PET can be used to detect serotonergic neuron loss in PD and monitor the efficacy of therapy.


Journal of Tissue Engineering and Regenerative Medicine | 2017

KA-bridged transplantation of mesencephalic tissue and olfactory ensheathing cells in a Parkinsonian rat model

Shao-Ju Weng; I-Hsun Li; Yuahn-Sieh Huang; Sheau-Huei Chueh; Ta-Kai Chou; San-Yuan Huang; Chyng-Yann Shiue; Cheng-Yi Cheng; Kuo-Hsing Ma

The pathology of Parkinsons disease (PD) results mainly from nigrostriatal pathway damage. Unfortunately, commonly used PD therapies do not repair the disconnected circuitry. It has been reported that using kainic acid (KA, an excitatory amino acid) in bridging transplantation may be useful to generate an artificial tract and reconstruct the nigrostriatal pathway in 6‐hydroxydopamine (6‐OHDA) lesioned rats. In this study, we used KA bridging and a co‐graft of rat olfactory ensheathing cells (OECs) and rat E14 embryonic ventral mesencephalic (VM) tissue to restore the nigrostriatal pathway of the PD model rats. The methamphetamine‐induced rotational behaviour, 4‐[18F]–ADAM (a selectively serotonin transporter radioligand)/micro‐PET imaging, and immunohistochemistry were used to assess the effects of the transplantation. At 9 weeks post‐grafting in PD model rats, the results showed that the PD rats undergoing VM tissue and OECs co‐grafts (VM–OECs) exhibited better motor recovery compared to the rats receiving VM tissue transplantation only. The striatal uptake of 4‐[18F]–ADAM and tyrosine hydroxylase immunoreactivity (TH‐ir) of the grafted area in the VM–OECs group were also more improved than those of the VM alone group. These results suggested that OECs may enhance the survival of the grafted VM tissue and facilitate the recovery of motor function after VM transplantation. Moreover, OECs possibly promote the elongation of dopaminergic and serotonergic axon in the bridging graft. Copyright

Collaboration


Dive into the I-Hsun Li's collaboration.

Top Co-Authors

Avatar

Kuo-Hsing Ma

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cheng-Yi Cheng

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chyng-Yann Shiue

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shao-Ju Weng

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wen-Sheng Huang

Tri-Service General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuahn-Sieh Huang

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ren-Shyan Liu

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Chang-Min Liang

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jiang-Chuan Liu

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jui-Hu Shih

National Defense Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge