I.-I. Lin
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I.-I. Lin.
Monthly Weather Review | 2008
I.-I. Lin; Chun-Chien Wu; Iam-Fei Pun; Dong-Shan Ko
Abstract Category 5 cyclones are the most intense and devastating cyclones on earth. With increasing observations of category 5 cyclones, such as Hurricane Katrina (2005), Rita (2005), Mitch (1998), and Supertyphoon Maemi (2003) found to intensify on warm ocean features (i.e., regions of positive sea surface height anomalies detected by satellite altimeters), there is great interest in investigating the role ocean features play in the intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ and climatological upper-ocean thermal structure data, best-track typhoon data of the U.S. Joint Typhoon Warning Center, together with an ocean mixed layer model, 30 western North Pacific category 5 typhoons that occurred during the typhoon season from 1993 to 2005 are systematically examined in this study. Two different types of situations are found. The first type is the situation found in the western North Pacific south eddy zone (SEZ; 21°–26°N, 127°–170°E) and the Kuroshio (21°–30...
Monthly Weather Review | 2005
I.-I. Lin; Chun-Chieh Wu; Kerry A. Emanuel; I-Huan Lee; Chau Ron Wu; Iam-Fei Pun
Understanding the interaction of ocean eddies with tropical cyclones is critical for improving the understanding and prediction of the tropical cyclone intensity change. Here an investigation is presented of the interaction between Supertyphoon Maemi, the most intense tropical cyclone in 2003, and a warm ocean eddy in the western North Pacific. In September 2003, Maemi passed directly over a prominent (700 km 500 km) warm ocean eddy when passing over the 22°N eddy-rich zone in the northwest Pacific Ocean. Analyses of satellite altimetry and the best-track data from the Joint Typhoon Warning Center show that during the 36 h of the Maemi–eddy encounter, Maemi’s intensity (in 1-min sustained wind) shot up from 41 ms 1 to its peak of 77 m s 1 . Maemi subsequently devastated the southern Korean peninsula. Based on results from the Coupled Hurricane Intensity Prediction System and satellite microwave sea surface temperature observations, it is suggested that the warm eddies act as an effective insulator between typhoons and the deeper ocean cold water. The typhoon’s self-induced sea surface temperature cooling is suppressed owing to the presence of the thicker upper-ocean mixed layer in the warm eddy, which prevents the deeper cold water from being entrained into the upper-ocean mixed layer. As simulated using the Coupled Hurricane Intensity Prediction System, the incorporation of the eddy information yields an evident improvement on Maemi’s intensity evolution, with its peak intensity increased by one category and maintained at category-5 strength for a longer period (36 h) of time. Without the presence of the warm ocean eddy, the intensification is less rapid. This study can serve as a starting point in the largely speculative and unexplored field of typhoon–warm ocean eddy interaction in the western North Pacific. Given the abundance of ocean eddies and intense typhoons in the western North Pacific, these results highlight the importance of a systematic and in-depth investigation of the interaction between typhoons and western North Pacific eddies.
Geophysical Research Letters | 2005
Chun-Mao Tseng; George T.F. Wong; I.-I. Lin; Chau Ron Wu; Kon-Kee Liu
elevated to 0.3 mg/m 3 , 35 mg/m 2 and 300 mg-C/m 2 /d, respectively, in the winter but stayed low, at 0.1 mg/m 3 , 15 mg/m 2 and 110 mg-C/m 2 /d as commonly found in other low latitude waters, in the rest of the year. Concomitantly, soluble reactive phosphate and nitrate+nitrite in the mixed layer also became readily detectable in the winter. The elevationofphytoplanktonbiomasscoincidedapproximately with the lowest sea surface temperature and the highest wind speed in the year. Only the combined effect of convective overturn by surface cooling and wind-induced mixing could have enhanced vertical mixing sufficiently to make the nutrients in the upper nutricline available for photosynthetic activities and accounted for the higher biomass in the winter. Citation: Tseng, C.-M., G. T. F. Wong, I.-I. Lin, C.-R. Wu, and K.-K. Liu (2005), A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea, Geophys. Res. Lett., 32, L08608, doi:10.1029/2004GL022111.
Bulletin of the American Meteorological Society | 2005
Chun-Chieh Wu; Po-Hsiung Lin; Sim D. Aberson; Tien-Chiang Yeh; Wei-Peng Huang; Kun-Hsuan Chou; Jing-Shan Hong; Guo-Chen Lu; Chin-Tzu Fong; Kuan-Chien Hsu; I.-I. Lin; Pay-Liam Lin; Ching-Hwang Liu
DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region) is an international research program conducted by meteorologists in Taiwan partnered with scientists at the Hurricane Research Division (HRD) and the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA). The experiment is based on successful surveillance missions conducted in the Atlantic with NOAAs Gulfstream-IV jet aircraft. During the experiment, GPS dropwindsondes are released from a jet aircraft flying above 42000 ft in and around tropical cyclones approaching Taiwan to collect critical meteorological data for improving the analysis and the prediction of typhoons. After one-year of training, development and installation of all the needed software and hardware in the aircraft, the DOTSTAR research team initiated typhoon surveillance in 2003. Two missions (in Typhoons Dujuan and Melor) were conducted successfully,and seven or eight missions are expected to be conducted annually during the 2004 and 2005 typhoon seasons. The current manuscript provides an overview of the scientific objectives of DOTSTAR including operational plans, organization, data management, and data archiving. Preliminary results of the two missions in the first season in 2003 are presented. The experiment marks the beginning of typhoon surveillance in the western North Pacific and is expected to yield impressive improvements in typhoon research, observations and forecasting.
Monthly Weather Review | 2009
I.-I. Lin; Iam-Fei Pun; Chun-Chieh Wu
Abstract Using new in situ ocean subsurface observations from the Argo floats, best-track typhoon data from the U.S. Joint Typhoon Warning Center, an ocean mixed layer model, and other supporting datasets, this work systematically explores the interrelationships between translation speed, the ocean’s subsurface condition [characterized by the depth of the 26°C isotherm (D26) and upper-ocean heat content (UOHC)], a cyclone’s self-induced ocean cooling negative feedback, and air–sea enthalpy fluxes for the intensification of the western North Pacific category 5 typhoons. Based on a 10-yr analysis, it is found that for intensification to category 5, in addition to the warm sea surface temperature generally around 29°C, the required subsurface D26 and UOHC depend greatly on a cyclone’s translation speed. It is observed that even over a relatively shallow subsurface warm layer of D26 ∼ 60–70 m and UOHC ∼ 65–70 kJ cm−2, it is still possible to have a sufficient enthalpy flux to intensify the storm to category 5...
Journal of the Atmospheric Sciences | 2007
Chun-Chieh Wu; Chia Ying Lee; I.-I. Lin
Abstract The rapid intensification of Hurricane Katrina followed by the devastation of the U.S. Gulf States highlights the critical role played by an upper-oceanic thermal structure (such as the ocean eddy or Loop Current) in affecting the development of tropical cyclones. In this paper, the impact of the ocean eddy on tropical cyclone intensity is investigated using a simple hurricane–ocean coupled model. Numerical experiments with different oceanic thermal structures are designed to elucidate the responses of tropical cyclones to the ocean eddy and the effects of tropical cyclones on the ocean. This simple model shows that rapid intensification occurs as a storm encounters the ocean eddy because of enhanced heat flux. While strong winds usually cause strong mixing in the mixed layer and thus cool down the sea surface, negative feedback to the storm intensity of this kind is limited by the presence of a warm ocean eddy, which provides an insulating effect against the storm-induced mixing and cooling. Two...
Nature | 2014
Fei-Fei Jin; Julien Boucharel; I.-I. Lin
The El Niño Southern Oscillation (ENSO) creates strong variations in sea surface temperature in the eastern equatorial Pacific, leading to major climatic and societal impacts. In particular, ENSO influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins through atmospheric dynamical factors such as vertical wind shear and stability. Until recently, however, the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of an apparent mismatch in both timing and location: ENSO peaks in winter and its surface warming occurs mostly along the Equator, a region without TC activity. Here we show that El Niño—the warm phase of an ENSO cycle—effectively discharges heat into the eastern North Pacific basin two to three seasons after its wintertime peak, leading to intensified TCs. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result of the time involved in ocean transport, El Niño’s equatorial subsurface ‘heat reservoir’, built up in boreal winter, appears in the eastern North Pacific several months later during peak TC season (boreal summer and autumn). By means of this delayed ocean transport mechanism, ENSO provides an additional heat supply favourable for the formation of strong hurricanes. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern North Pacific.
IEEE Transactions on Geoscience and Remote Sensing | 2007
Iam-Fei Pun; I.-I. Lin; Chau Ron Wu; Dong-Shan Ko; W. T. Liu
This paper uses more than 5000 colocated and near-coincident in-situ profiles from the National Oceanic and Atmospheric Administration/Global Temperature and Salinity Profile Program database spanning over the period from 2002 to 2005 to systematically validate the satellite-altimetry-derived upper ocean thermal structure in the western North Pacific ocean as such ocean thermal structure information is critical in typhoon-intensity change. It is found that this satellite-derived information is applicable in the central and the southwestern North Pacific (covering 122-170degE, 9-25degN) but not in the northern part (130-170degE, 25-40degN). However, since > 80% of the typhoons are found to intensify in the central and southern part, this regional dependence should not pose a serious constraint in studying typhoon intensification. Further comparison with the U.S. Naval Research Laboratorys North Pacific Ocean Nowcast/Forecast System (NPACNFS) hydrodynamic ocean model shows similar regional applicability, but NPACNFS is found to have a general underestimation in the upper ocean thermal structure and causes a large underestimation of the tropical cyclone heat potential (TCHP) by up to 60 kJ/cm2. After validation, the derived upper ocean thermal profiles are used to study the intensity change of supertyphoon Dianmu (2004). It is found that two upper ocean parameters, i.e., a typhoons self-induced cooling and the during-typhoon TCHP, are the most sensitive parameters (with R 2~0.7) to the 6-h intensity change of Dianmu during the study period covering Dianmus rapid intensification to category 5 and its subsequent decay to category 4. This paper suggests the usefulness of satellite-based upper ocean thermal information in future research and operation that is related to typhoon-intensity change in the western North Pacific
Geophysical Research Letters | 2014
I.-I. Lin; Iam-Fei Pun; Chun-Chi Lien
With the extra-ordinary intensity of 170 kts, supertyphoon Haiyan devastated the Philippines in November 2013. This intensity is among the highest ever observed for tropical cyclones (TCs) globally, 35 kts well above the threshold (135kts) of the existing highest category of 5. Though there is speculation to associate global warming with such intensity, existing research indicate that we have been in a warming hiatus period, with the hiatus attributed to the La Nina-like multi-decadal phenomenon. It is thus intriguing to understand why Haiyan can occur during hiatus. It is suggested that as the western Pacific manifestation of the La Nina-like phenomenon is to pile up warm subsurface water to the west, the western North Pacific experienced evident subsurface warming and created a very favorable ocean pre-condition for Haiyan. Together with its fast traveling speed, the air-sea flux supply was 158% as compared to normal for intensification.
Global Biogeochemical Cycles | 2011
I.-I. Lin; Chuanmin Hu; Yuan-Hui Li; Tung-Yuan Ho; Tobias P. Fischer; George T.F. Wong; Jingfeng Wu; Chih Wei Huang; D. Allen Chu; Dong S. Ko; Jen-Ping Chen
volcanic particles and a phytoplankton bloom. FLH was found to be ∼9–17 × 10 −3 mW cm −2 mm −1 sr −1 in the patch and ∼3– 5×1 0 −3 mW cm −2 mm −1 sr −1 in the ambient water, indicating that a 2–5‐fold increase in biological activity occurred during the week following the eruption. Satellite altimetry indicated that the bloom took place in the presence of downwelling and was not a result of upwelled nutrients in this oligotrophic ocean. Analysis of satellite ocean color spectra of the bloom region found similar spectra as the reference Trichodesmium spectra. Laboratory experiments further substantiate the satellite observations which show elevated concentrations of limiting nutrients provided by the Anatahan samples, and the averaged soluble nitrate, phosphate, and Fe were 42, 3.1, and 2.0 nM, respectively. Though it was not possible to obtain in situ observations of the ocean biogeochemical responses that followed the Anatahan eruption, this study provided evidence based on remote sensing data and laboratory experiment that fertilization of volcanic aerosols occurred following this eruption in one of the most oligotrophic low‐nutrient low‐chlorophyll ocean deserts on Earth.