Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. J. Cullen is active.

Publication


Featured researches published by I. J. Cullen.


Physical Review C | 2013

Schottky mass measurements of heavy neutron-rich nuclides in the element range 70 <= Z <= 79 at the GSI Experimental Storage Ring

Daria Shubina; Burcu R. Cakirli; Yuri A. Litvinov; Klaus Blaum; C. Brandau; F. Bosch; J.J. Carroll; R. F. Casten; D. M. Cullen; I. J. Cullen; A. Y. Deo; B. Detwiler; C. Dimopoulou; F. Farinon; H. Geissel; E. Haettner; M. Heil; R.S. Kempley; C. Kozhuharov; R. Knöbel; J. Kurcewicz; N. Kuzminchuk; S. Litvinov; Z. Liu; R. S. Mao; C. Nociforo; F. Nolden; Z. Patyk; W. R. Plass; A. Prochazka

D. Shubina, 2, 3 R.B. Cakirli, 4 Yu.A. Litvinov, 3 K. Blaum, C. Brandau, 5 F. Bosch, J.J. Carroll, R.F. Casten, D.M. Cullen, I.J. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, F. Farinon, H. Geissel, 11 E. Haettner, M. Heil, R.S. Kempley, C. Kozhuharov, R. Knobel, J. Kurcewicz, N. Kuzminchuk, S.A. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, Z. Patyk, W.R. Plass, A. Prochazka, M.W. Reed, 15 M.S. Sanjari, 16 C. Scheidenberger, 11 M. Steck, Th. Stohlker, 17, 18 B. Sun, 19 T.P.D. Swan, G. Trees, P.M. Walker, 20 H. Weick, N. Winckler, 3 M. Winkler, P.J. Woods, T. Yamaguchi, and C. Zhou Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Fakultat fur Physik und Astronomie, Universitat Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany GSI Helmholtzzentrum fur Schwerionenforschung, Planckstrase 1, 64291 Darmstadt, Germany Department of Physics, University of Istanbul, Istanbul, Turkey ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fur Schwerionenforschung, 64291 Darmstadt, Germany US Army Research Laboratory, 2800 Powder Mill Road, Adelphi MD, USA Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom Youngstown State University, One University Plaza, Youngstown, Ohio 44555, USA II Physikalisches Institut, Justus-Liebig-Universitat Giesen, 35392 Giesen, Germany School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China National Centre for Nuclear Research, PL-00681 Warsaw, Poland Department of Nuclear Physics, R.S.P.E., Australian National University, Canberra ACT 0200, Australia Goethe-Universitat Frankfurt, 60438 Frankfurt, Germany Friedrich-Schiller-Universitat Jena, 07737 Jena, Germany Helmholtz-Institut Jena, 07743 Jena, Germany School of Physics and Nuclear Energy Engineering, Beihang University, 100191 Beijing, PRC CERN, CH-1211 Geneva 23, Switzerland Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan Storage-ring mass spectrometry was applied to neutron-rich Au projectile fragments. Masses of Lu, Hf, Ta, W, and Re nuclei were measured for the first time. The uncertainty of previously known masses of W and Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.


Physical Review Letters | 2013

Direct observation of long-lived isomers in 212Bi.

Lie-Wen Chen; P. M. Walker; H. Geissel; Yuri Litivnov; K. Beckert; P. Beller; F. Bosch; D. Boutin; L. Caceres; J.J. Carroll; D. M. Cullen; I. J. Cullen; B. Franzke; J. Gerl; M. Gorska; G. A. Jones; A. M. Kishada; R. Knöbel; C. Kozhuharov; J. Kurcewicz; S. Litvinov; Z. Liu; S. Mandal; Fernando Montes; G. Münzenberg; F. Nolden; T. Ohtsubo; Z. Patyk; Zs. Plaß; W.R. Podolyák

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.


International Journal of Modern Physics E-nuclear Physics | 2009

LARGE-SCALE MASS MEASUREMENTS OF SHORT-LIVED NUCLIDES WITH THE ISOCHRONOUS MASS SPECTROMETRY AT GSI

B. Sun; R. Knöbel; Yu. A. Litvinov; S. Nakajima; H. Geissel; J. Meng; K. Beckert; F. Bosch; D. Boutin; C. Brandau; L. Chen; I. J. Cullen; C. Dimopoulou; B. Fabian; M. Hausmann; O. Klepper; C. Kozhuharov; J. Kurcewicz; S. A. Litvinov; M. Mazzocco; F. Montes; G. Münzenberg; A. Musumarra; C. Nociforo; F. Nolden; T. Ohtsubo; A. Ozawa; Z. Patyk; W.R. Plaß; C. Scheidenberger

Precise mass measurements of short-lived exotic nuclei are very important for the understanding of basic nuclear structure physics and astrophysical nucleosynthesis in nature, as well as for the test and the development of theoretical nuclear mass models. At GSI, the Isochronous Mass Spectrometry (IMS) dedicated to mass measurements of short-lived nuclides was developed. In this contribution, the IMS technique is briefly reviewed. Recently, the first large-scale measurement on the 238U fission fragment was done successfully. The measured mass values are in excellent agreement with the recent Penning trap data, however, they show a systematical deviation from the values in the latest atomic mass evaluation. Some representative results from this experiment will be presented, including their impact on nuclear structure physics and astrophysical r-process nucleosynthesis.


Journal of Physics: Conference Series 381 (2012) 012060 - Rutherford Centennial Conference on Nuclear Physics, 8–12 August 2011, Manchester, UK | 2012

Technique for Resolving Low-lying Isomers in the Experimental Storage Ring (ESR) and the Occurrence of an Isomeric State in 192Re

M.W. Reed; P. M. Walker; I. J. Cullen; Yuri A. Litvinov; Klaus Blaum; F. Bosch; C´. Brandau; J.J. Carroll; D. M. Cullen; A. Y. Deo; B. Detwiler; C. Dimopoulou; G.D. Dracoulis; F. Farinon; H. Geissel; E. Haettner; M. Heil; R.S. Kempley; R. Knöbel; C. Kozhuharov; J. Kurcewicz; N. Kuzminchuk; S. Litvinov; Z. Liu; R. S. Mao; C. Nociforo; F. Nolden; W.R. Plaß; A. Prochazka; C. Scheidenberger

A recent experiment using projectile fragmentation of a 197Au beam on a 9Be target, combined with the fragment recoil separator and experimental storage ring at ring at GSI, has uncovered an isomeric state in 192Re at 267(10) keV with a half-life of ~60 s. The data analysis technique used to resolve the isomeric state from the ground state is discussed.


International Journal of Modern Physics E-nuclear Physics | 2009

Isomeric decay studies in neutron-rich N ≈ 126 nuclei

S. J. Steer; Zs. Podolyák; S. Pietri; M. Górska; G. F. Farrelly; P. H. Regan; Dirk Rudolph; A. B. Garnsworthy; R. Hoischen; J. Gerl; H. J. Wollersheim; H. Grawe; K. H. Maier; F. Becker; P. Bednarczyk; L. Caceres; P. Doornenbal; H. Geissel; J. Grbosz; A. Kelic; I. Kojouharov; N. Kurz; F. Montes; W. Prokopowicz; T. Saito; H. Schaffner; S. Tashenov; A. Heinz; T. Kurtukian-Nieto; G. Benzoni

Heavy neutron-rich nuclei were populated via relativistic energy fragmentation of a E/A = 1 GeV208Pb beam. The nuclei of interest were selected and identified by a fragment separator and then implanted in a passive plastic stopper. Delayed γ rays following internal isomeric decays were detected by the RISING array. Experimental information was obtained on a number of nuclei with Z = 73-80 (Ta-Hg), providing new information both on the prolate-oblate transitional region as well as on the N = 126 closed shell nuclei.


Physical Review Letters | 2013

Direct observation of long-lived isomers in Bi212

Lie-Wen Chen; P. M. Walker; H. Geissel; Yu. A. Litvinov; K. Beckert; P. Beller; F. Bosch; D. Boutin; L. Caceres; J.J. Carroll; D. M. Cullen; I. J. Cullen; B. Franzke; J. Gerl; M. Gorska; G. A. Jones; A. M. Kishada; R. Knöbel; C. Kozhuharov; J. Kurcewicz; S. Litvinov; Z. Liu; S. Mandal; F. Montes; G. Münzenberg; F. Nolden; T. Ohtsubo; Z. Patyk; W.R. Plaß; Zs. Podolyák

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.


International Journal of Modern Physics E-nuclear Physics | 2008

First results with the rising active stopper

P. H. Regan; N. Alkhomashi; N. Al-Dahan; Zs. Podolyák; S. Pietri; S. J. Steer; A. B. Garnsworthy; Emma B. Suckling; P. D. Stevenson; G. F. Farrelly; I. J. Cullen; W. Gelletly; P. M. Walker; J. Benlliure; A. I. Morales; E. Casajeros; M. E. Estevez; J. Gerl; M. Górska; H. J. Wollersheim; P. Boutachkov; S. Tashenov; I. Kojouharov; H. Schaffner; N. Kurz; R. Kumar; B. Rubio; A. Algora; F. Molina; J. Grebosz

This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.


Physics Letters B | 2017

Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

F. Wang; B. Sun; Zhenan Liu; R. D. Page; Chong Qi; C. Scholey; S. F. Ashley; L. Bianco; I. J. Cullen; I.G. Darby; Sarah Eeckhaudt; A. B. Garnsworthy; W. Gelletly; M.B. Gómez-Hornillos; T. Grahn; P. T. Greenlees; D. G. Jenkins; G. A. Jones; Peter W. Jones; D. T. Joss; R. Julin; S. Juutinen; S. Ketelhut; S. Khan; A. M. Kishada; M. Leino; M. Niikura; M. Nyman; J. Pakarinen; S. Pietri

Abstract The quenching of the experimental spectroscopic factor for proton emission from the short-lived d 3 / 2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyvaskyla. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu.


Physical Review C | 2013

Core-coupled states and split proton-neutron quasiparticle multiplets in 122-126Ag

S. Lalkovski; A. M. Bruce; A. Jungclaus; M. Gorska; M. Pfützner; L. Caceres; F. Naqvi; S. Pietri; Zs. Podolyák; G. S. Simpson; K. Andgren; P. Bednarczyk; T. Beck; J. Benlliure; G. Benzoni; E. Casarejos; B. Cederwall; F. C. L. Crespi; J. J. Cuenca-Garcia; I. J. Cullen; A. M. Denis Bacelar; P. Detistov; P. Doornenbal; G. F. Farrelly; A. B. Garnsworthy; H. Geissel; W. Gelletly; J. Gerl; J. Grebosz; B. Hadinia

Neutron-rich silver isotopes were populated in the fragmentation of a Xe-136 beam and the relativistic fission of U-238. The fragments were mass analyzed with the GSI Fragment Separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 high-purity germanium detectors. Eight isomeric states were observed in Ag122-126 nuclei. The level schemes of Ag-122,Ag-123,Ag-125 were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data. DOI: 10.1103/PhysRevC.87.034308 (Less)


TOURS SYMPOSIUM ON NUCLEAR PHYSICS VI | 2007

New Developments for Isochronous Mass Measurements of Short‐Lived Nuclei

R. Knöbel; S. Litvinov; B. Sun; K. Beckert; P. Beller; F. Bosch; D. Boutin; C. Brandau; L. Chen; I. J. Cullen; C. Dimopoulou; A. Dolinskii; B. Fabian; H. Geissel; M. Hausmann; C. Kozhuharov; J. Kurcewicz; Yu. A. Litvinov; Z. Liu; M. Mazzocco; F. Montes; G. Münzenberg; A. Musumarra; S. Nakajima; C. Nociforo; F. Nolden; T. Ohtsubo; A. Ozawa; Z. Patyk; W.R. Plaß

The combination of the in‐flight separator FRS and the storage‐ring ESR at GSI offers unique possibilities for high accuracy mass and lifetime measurements of bare and few‐electron fragments. Operating the ESR in the isochronous mode allows for measurements of revolution frequencies of stored ions without cooling. Isochronous Mass Spectrometry (IMS) can be applied to fragments with half‐lives as short as several tens of microseconds. Newly developed magnetic rigidity tagging increases the resolving power of IMS to about 500000. IMS can be used to measure masses of nuclei with rates even lower than one ion per day, a property also needed for the purpose of the ILIMA project at the future facility FAIR.

Collaboration


Dive into the I. J. Cullen's collaboration.

Top Co-Authors

Avatar

J. Gerl

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Geissel

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Caceres

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Gorska

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

H. J. Wollersheim

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar

I. Kojouharov

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge