I-Lin Tsai
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I-Lin Tsai.
Journal of Chromatography A | 2009
I-Lin Tsai; Shao-Wen Sun; Hsiao-Wei Liao; Lin Sf; Ching-Hua Kuo
In the present study, an analytical method using capillary electrophoresis with on-line preconcentration technique was developed for rapid determination of melamine in infant formula. Both stacking and sweeping preconcentration techniques had been investigated for the comparison of their effectiveness in melamine analysis. The limit of detection of melamine standard was 0.5 ng/mL for the field amplified sample stacking (FASS) technique and 9.2 ng/mL for the sweeping technique. Although the FASS technique provided better concentration efficacy than the sweeping technique, the matrix effect was more profound with the former. Matrix effect was evaluated by comparing the enhancement factor (EF) of melamine standard and post-extraction spiked infant formula solution. The EF was changed from 429.86 +/- 9.81 to the level less than 133.31 with significant peak distortion in the FASS system, and it was remained unchanged in the sweeping system. Sweeping-micellar electrokinetic chromatography (sweeping-MEKC) was demonstrated to be most suitable for real sample analysis. Under optimum sweeping-MEKC conditions, melamine content in infant formulas could be determined within 6 min. The developed solid phase extraction (SPE) procedures coupled with the sweeping-MEKC method was subjected to method validation. Run-to-run repeatability (n = 3) and day-to-day reproducibility (n = 3) of peak area were within 3.6% and 4.8% RSD, respectively. The accuracy was tested by spiking 0.5 and 2 microg/mL of melamine standard in the melamine contaminated milk powder provided by the European Commission, and the recoveries were 93.4 +/- 0.5% and 98.7 +/- 0.4%, respectively. Results of this study show a great potential for the sweeping-MEKC method as a tool for the fast screening of melamine in infant formulas.
Talanta | 2013
I-Lin Tsai; Hsin-Yun Sun; Guan-Yuan Chen; Shu-Wen Lin; Ching-Hua Kuo
Antibiotic-resistant bacterial infection is one of the most serious clinical problems worldwide. Vancomycin, teicoplanin, daptomycin, and colistin are glycopeptide and lipopeptide antibiotics that are frequently used to treat multidrug-resistant bacterial infections. Therapeutic drug monitoring is recommended to ensure both safety and efficacy and to improve clinical outcomes. This study developed a fast, simple, and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of the concentrations of these four drugs in human plasma. The sample preparation process includes a simple protein denaturation step using acetonitrile, followed by an 11-fold dilution with 0.1% formic acid. Eight target peaks for the four drugs can be analyzed within 3 min using a Kinetex™ 2.6 μm C18 column. The mass spectrometry parameters were optimized, and two transitions for each target peak were used for multiple reaction monitoring, which provided high sensitivity and specificity. The UHPLC-MS/MS method was validated over clinical concentration ranges. The intra-day and inter-day precisions for the ratio of the peak area of each analyte to the peak area of the internal standard were all below 12.7 and 14.7% relative standard deviations, respectively. The accuracy at low, medium, and high concentrations of the eight target peaks was between 89.3 and 110.7%. The standard curves for the analytes were linear and had coefficients of determination higher than 0.997. The limits of detection were all below 70 ng mL(-1). The use of this method to analyze patient plasma samples confirmed that it is effective for the therapeutic drug monitoring of these four drugs and can be used to improve the therapeutic efficacy and safety of treatment with antibiotics.
Journal of Analytical Toxicology | 2013
I-Lin Tsai; Te-I Weng; Yufeng J. Tseng; Happy Kuy-Lok Tan; Hsiao-Ju Sun; Ching-Hua Kuo
An ultra-high-performance liquid chromatography--quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) method for the screening and confirmation of 62 drugs of abuse and their metabolites in urine was developed in this study. The most commonly abused drugs, including amphetamines, opioids, cocaine, benzodiazepines (BZDs) and barbiturates, and many other new and emerging abused drugs, were selected as the analytes for this study. Urine samples were diluted 5-fold with deionized water before analysis. Using a superficially porous micro-particulate column and an acetic acid-based mobile phase, 54 basic and 8 acidic analytes could be detected within 15 and 12 min in positive and negative ionization modes, respectively. The MS collision energies for the 62 analytes were optimized, and their respective fragmentation patterns were constructed in the in-house library for confirmatory analysis. The coefficients of variation of the intra- and inter-day precision of the analyte responses all were <17.39%. All analytes, except barbital, showed matrix effects of 77-121%. The limits of detection of the 62 analytes were between 2.8 and 187.5 ng/mL, which were lower than their respective cut-off concentrations (20-500 ng/mL). Ten urine samples from patients undergoing methadone treatment were analyzed by the developed UHPLC-QTOF-MS method, and the results were compared with the immunoassay method.
Talanta | 2010
Ching-Hua Kuo; Chia-Wen Lee; Lin Sf; I-Lin Tsai; Shoei-Sheng Lee; Y. Jane Tseng; Jaw-Jou Kang; Fu-Chuo Peng; Wei-Chu Li
Aristolochic acids (AAs) are a mixture of structural-related compounds, in which aristolochic acid I (AA I) and aristolochic acid II (AA II) are reported to be correlated with Aristolochic acid nephropathy (AAN). In this work, a rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine AA I and AA II in herbal products and biological fluids. By using gradient elution with a mobile phase composed of a mixture of 10mM ammonium formate buffer (pH 3.0) and acetonitrile, AAs could be determined within 10 min. Under optimum UHPLC-MS/MS conditions, the limit of detections was 0.14 and 0.26 ng mL(-1) for AA I and AA II, respectively. Run-to-run repeatability and intermediate precision of peak area for AA I and AA II were less than 5.74% relative standard deviation (RSD). Accuracy was tested by spiking 10, 100 and 1000 ng mL(-1) in rat serum and the recoveries were within 76.5-92.9%. Matrix effects were within 78.8-127.7%. The developed method was successfully applied to determine AA I and AA II in several herbal products and to investigate their pharmacokinetic behavior in female Wister rats. The result shows that the developed UHPLC-MS/MS method is efficient, sensitive, and accurate for the determination of AA I and AA II in herbal products and biological samples.
Journal of Chromatography A | 2014
Hsiao-Wei Liao; Guan-Yuan Chen; I-Lin Tsai; Ching-Hua Kuo
Matrix effects (MEs) are a major problem affecting the quantitative accuracy of liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) when analyzing complicated samples. While analyzing urine specimens, the wide diversity of endogenous materials and different urine concentrations may result in inaccurate quantification. In this study, we propose a postcolumn-infused internal standard (PCI-IS) strategy for universal correction of MEs in urine specimens. MEs can be effectively corrected by dividing the target analyte signal intensity by the PCI-IS intensity. To evaluate the performance of PCI-IS, we used 6 benzodiazepine (BZD) drugs in 5 different concentrations of urine matrixes as a test model. The divergence of the BZD drug signal responses in 5 different urine matrixes was expressed using their respective coefficients of variation (CV) to evaluate the efficiency of using PCI-IS in correcting matrix effects. The CV of the BZD drug signal intensities in these 5 different concentrations of the urine matrixes were reduced from 10 to 30% to less than 10% when the PCI-IS correction method was employed. When the PCI-IS method was used to correct the 6 BZDs in 25 real human urine samples, over 90% of the test results exhibited quantification errors of less than 20%, and all of the test results had quantification errors of less than 30%. These results demonstrate that the PCI-IS method can resolve the problem of inaccurate quantification that arises from the diversity of urine specimens. The PCI-IS method is particularly useful for clinical analysis or forensic toxicology to improve the quantification accuracy in an economical way.
Evidence-based Complementary and Alternative Medicine | 2013
Dong-Ming Tsai; Jaw-Jou Kang; Shoei-Sheng Lee; San-Yuan Wang; I-Lin Tsai; Guan-Yuan Chen; Hsiao-Wei Liao; Li Wei-Chu; Ching-Hua Kuo; Y. Jane Tseng
Aristolochic acid nephropathy is caused by aristolochic acid (AA) and AA-containing herbs. In traditional Chinese medicine, a principle called “Jun-Chen-Zou-Shi” may be utilized to construct a remedial herbal formula that attempts to mitigate the toxicity of the main ingredient. This study used Bu-Fei-A-Jiao-Tang (BFAJT) to test if the compound remedy based on a principle of “Jun-Chen-Zou-Shi” can decrease the toxicity of AA-containing herbs. We compared the three toxicities of AA standard, Madouling (an Aristolochia herb), and a herbal formula BFAJT. AA standard was given for BALB/c mice at a dose of 5 mg/kg bw/day or 7.5 mg/kg bw/day for 10 days. Madouling and BFAJT were given at an equivalence of AA 0.5 mg/kg bw/day for 21 days. Nephrotoxicity was evaluated by metabolomics and histopathology. The urinary metabolomics profiles were characterized by 1H NMR spectroscopy. The spectral data was analyzed with partial least squares discriminant analysis, and the significant differential metabolites between groups were identified. The result showed different degrees of acute renal tubular injuries, and metabolomics analysis found that the kidney injuries were focused in proximal renal tubules. Both metabolomics and pathological studies revealed that AA standard, Madouling, and BFAJT were all nephrotoxicants. The compositions of the compound remedy did not diminish the nephrotoxicity caused by AA.
Cancers | 2013
I-Lin Tsai; Tien-Chueh Kuo; Tsung-Jung Ho; Yeu-Chern Harn; San-Yuan Wang; Wen-Mei Fu; Ching-Hua Kuo; Yufeng J. Tseng
Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.
Analytica Chimica Acta | 2013
Hsiao-Wei Liao; I-Lin Tsai; Guan-Yuan Chen; Chun-Ting Kuo; Ming-Feng Wei; Tzung-Jeng Hwang; Wei J. Chen; Li-Jiuan Shen; Ching-Hua Kuo
CYP2D6 (cytochrome P450 2D6) is one of the most important enzymes involved in drug metabolism, and CYP2D6 gene variants may cause toxic effects of therapeutic drugs or treatment failure. In this research, a rapid and simple method for genotyping the most common mutant alleles in the Asian population (CYP2D6*1/*1, CYP2D6*1/*10, CYP2D6*10/*10, CYP2D6*1/*5, CYP2D6*5/*10, and CYP2D6*5/*5) was developed by allele-specific polymerase chain reaction (AS-PCR) combined with capillary electrophoresis (CE). We designed a second mismatch nucleotide next to the single nucleotide polymorphism (SNP) site in allele-specific primers to increase the difference in PCR amplification. Besides, we established simulation equations to predict the CYP2D6 genotypes by analyzing the DNA patterns in the CE chromatograms. The multiplex PCR combined with CE method was applied to test 50 patients, and all of the test results were compared with the DNA sequencing method, long-PCR method and real-time PCR method. The correlation of the analytical results between the proposed method and other methods were higher than 90%, and the proposed method is superior to other methods for being able to simultaneous detection of SNPs and copy number variations (CNV). Furthermore, we compared the plasma concentration of aripiprazole (a CYP2D6 substrate) and its major metabolites with the genotype of 25 patients. The results demonstrate the proposed genotyping method is effective for estimating the activity of the CYP2D6 enzyme and shows potential for application in personalized medicine. Similar approach can be applied to simultaneous detection of SNPs and CNVs of other genes.
Analytica Chimica Acta | 2015
Guan Yuan Chen; Hsiao Wei Liao; Yufeng J. Tseng; I-Lin Tsai; Ching-Hua Kuo
Normalizing the total urine concentration is important for minimizing bias in urinary metabolomics analysis comparisons. In this study, we report a matrix-induced ion suppression (MIIS)-based method to normalize concentration using flow injection analysis coupled with electrospray ionization mass spectrometry (FIA-ESI-MS). An ion suppression indicator (ISI) was spiked into urine samples, and the intensity of the extracted ion chromatogram (EIC) for ISI in a urine matrix was subtracted by the EIC for a blank solution and used to calculate the extent to which the signal was reduced by the urine matrix. A series dilution of pooled urine samples was used to correlate the urine concentration and level of ion suppression for ISI. A regression equation was used to estimate the relative concentration of unknown urine samples. The MIIS method was validated for linearity, precision and accuracy. We obtained a good correlation using a quadratic regression model for 1- to 32-fold urine dilutions (R(2)=0.998). The reproducibility (n=4) and intermediate precision (n=3) were below 5% RSD, and the accuracy ranged from 97.15% to 102.10%. The established method was used to estimate the relative concentrations of 16 urine samples, and the results were compared with commonly used normalization methods. Pearsons correlation test was used to demonstrate that the MIIS method correlated highly with the creatinine and osmolarity methods; the correlation coefficients were 0.93 and 0.99, respectively. We successfully applied this method to a urinary metabolomics study on breast cancer. This study demonstrated the MIIS method is simple, accurate and can contribute to data integrity in urinary metabolomics studies.
Journal of Chromatography A | 2014
Hsiao-Wei Liao; I-Lin Tsai; Guan-Yuan Chen; Yen-Shen Lu; Ching-Hung Lin; Ching-Hua Kuo
Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) has become one of the most widely used methods in pharmaceutical laboratories. Although LC-ESI-MS provides high sensitivity and high specificity for quantifying target analytes in complicated biofluids, the associated severe matrix effects (MEs) generally result in large quantification errors. Here, we propose a novel strategy for correcting MEs in various biofluids using a postcolumn infused-internal standard (PCI-IS) method in combination with matrix normalization factors (MNFs). We used the MNFs to normalize the encountered MEs in various biofluids to the MEs encountered in standard solutions. The use of a postcolumn infused-internal standard also corrects the MEs for individual samples. When using the PCI-IS method in combination with MNFs, the calibration curve generated from standard solutions can be applied to quantify the target analytes in various biofluids. We applied this new approach to quantify etoposide and etoposide catechol in plasma and CSF. The accuracy of the test results showed that over 93% of the data have quantification errors less than 20% and that 99% of the data have quantification errors less than 30%. The successful application of this method to evaluate real clinical samples revealed that our proposed MNFs in combination with the PCI-IS method largely simplifies the entire method development and validation processes, saves a great deal of time and cost without sacrificing quantification accuracy, and provides a simple means of quantifying target analytes in various biofluids. This method will be particularly useful in fields in which the same target analytes need to be quantified in various types of matrices, including bioanalysis, forensic toxicology, environmental studies, and food safety control.