Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Lloro is active.

Publication


Featured researches published by I. Lloro.


Classical and Quantum Gravity | 2011

LISA Pathfinder: mission and status

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter

LISA Pathfinder, the second of the European Space Agencys Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun?Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500?000 km by 800?000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.


Classical and Quantum Gravity | 2012

The LISA Pathfinder Mission

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; M. Caleno; Priscilla Canizares; A. Cavalleri; M. Cesa; M. Chmeissani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; V. Ferrone; Walter Fichter

In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.


Physical Review Letters | 2018

Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz

M. Armano; H. Audley; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; E. Castelli; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; M. Freschi; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel; M. Hewitson; D. Hollington; D. Hoyland

In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20u2009u2009μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05)u2009u2009fmu2009s^{-2}/sqrt[Hz] above 2xa0mHz and (6±1)×10u2009u2009fmu2009s^{-2}/sqrt[Hz] at 20u2009u2009μHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.


Classical and Quantum Gravity | 2011

LISA Pathfinder data analysis

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; E. Fitzsimons

As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.


Physical Review Letters | 2017

Charge-induced force-noise on free-falling test masses: results from LISA Pathfinder

M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; R. Flatscher; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri

We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0u2009u2009fmu2009s^{-2}u2009Hz^{-1/2} across the 0.1-100xa0mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.


Journal of Physics: Conference Series | 2015

Bayesian statistics for the calibration of the LISA pathfinder experiment

M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; I. Harrison

The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.


Journal of Physics: Conference Series | 2011

Milli-Hertz Gravitational Waves: LISA and LISA PathFinder

H.M. Araújo; Priscilla Canizares; M. Chmeissani; A. Conchillo; M. Diaz-Aguilo; Enrique García-Berro; L. Gesa; F. Gibert; C. Grimani; W Hajdas; D. Hollington; I. Lloro; Alberto Lobo; I. Mateos; M. Nofrarias; C. Puigdengoles; J. Ramos-Castro; J. Sanjuan; Carlos F. Sopuerta; P. Wass

Ground based GW detectors are limited at their lower frequency band (1-10 Hz) by settlement gravity gradients and seismic noise, and their sensitivity peaks at around 100 Hz. Sources in this band are mostly short duration signals, and their rates uncertain. Going down to milli-Hertz frequencies significantly increases the number and types of available sources. LISA was planned with the idea to explore a likely richer region of the GW spectrum, beyond that accessible to ground detectors; the latter are however expected to produce the first GW observations. In this paper I will present the main LISA concepts; in particular, emphasis will be placed on LISAPathFinder, the ESA precursor of LISA, in which our research group in Barcelona is heavily involved.


Physical Review D | 2018

Precision Charge Control for Isolated Free-Falling Test Masses: LISA Pathfinder Results

M. Armano; H. Audley; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; E. Castelli; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; M. Freschi; L. Gesa; Domenico Giardini; F. Gibert; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel; M. Hewitson; D. Hollington; D. Hoyland

The LISA Pathfinder charge management device was responsible for neutralizing the cosmic-ray-induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in flight that quantify the performance of this contactless discharge system which was based on photoemission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modeling of the absorbed UV light within the Pathfinder sensor was carried out with the Geant4 software toolkit and a separate Matlab charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses.


Physical Review D | 2018

Calibrating the system dynamics of LISA Pathfinder

M. Armano; H. Audley; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; E. Castelli; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; L. Ferraioli; V. Ferroni; Ewan Fitzsimons; M. Freschi; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel; M. Hewitson; D. Hollington; D. Hoyland

LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.


arXiv: Instrumentation and Methods for Astrophysics | 2017

Laser Interferometer Space Antenna

H. Audley; G. Wanner; Philippe Jetzer; Gijs Nelemans; M. Vallisneri; Cole Miller; D. Bortoluzzi; P. Zweifel; Nary Man; John Ziemer; M. Hueller; C. Grimani; Alberto Sesana; Ed Porter; Jonathan R. Gair; Monica Colpi; Hubert Halloin; D. Hollington; V. Ferroni; Antoine Petiteau; Nicola Tamanini; Alberto Vecchio; Shane L; D. I. Robertson; Curt Cutler; T. J. Sumner; F. Gibert; M. Hewitson; P. Pivato; Carlos F. Sopuerta

Collaboration


Dive into the I. Lloro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Armano

European Space Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Gibert

Institut de Ciències de l'Espai

View shared research outputs
Researchain Logo
Decentralizing Knowledge