I. Marques-Aleixo
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Marques-Aleixo.
Progress in Neurobiology | 2012
I. Marques-Aleixo; Paulo J. Oliveira; Paula I. Moreira; José Magalhães; António Ascensão
Aging and neurodegenerative conditions such as Alzheimer and Parkinson diseases are characterized by tissue and mitochondrial changes that compromise brain function. Alterations can include increased reactive oxygen species production and impaired antioxidant capacity with a consequent increase in oxidative damage, mitochondrial dysfunction that compromises brain ATP production, and ultimately increased apoptotic signaling and neuronal death. Among several non-pharmacological strategies to prevent brain degeneration, physical exercise is a surprisingly effective strategy, which antagonizes brain tissue and mitochondrial dysfunction. The present review aims to discuss the role of physical exercise in the modulation of the mechanisms involved in neuroprotection including the activation of signaling pathways underlying brain protection.
Neuroscience | 2015
I. Marques-Aleixo; Estela Santos-Alves; M.M. Balça; David Rizo-Roca; Paula I. Moreira; Paulo J. Oliveira; José Magalhães; António Ascensão
We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise contributed to increased mitochondrial plasticity leading to a more robust phenotype.
Mitochondrion | 2015
I. Marques-Aleixo; Estela Santos-Alves; Diogo Mariani; David Rizo-Roca; Ana Isabel Padrão; Sílvia Rocha-Rodrigues; Ginés Viscor; J. Ramon Torrella; Rita Ferreira; Paulo J. Oliveira; José Magalhães; António Ascensão
Doxorubicin (DOX) is an anti-cancer agent whose clinical usage results in a cumulative and dose-dependent cardiotoxicity. We have previously shown that exercise performed prior to DOX treatment reduces the resulting cardiac(mito) toxicity. We sought to determine the effects on cardiac mitochondrial toxicity of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free-wheel activity-FW) when used prior and during DOX treatment. Male-young Sprague-Dawley rats were divided into six groups (n=6 per group): SAL+SED (saline sedentary), SAL+TM (12-weeks TM), SAL+FW (12-weeks FW), DOX+SED (7-weeks of chronic DOX treatment 2mg/kg per week), DOX+TM and DOX+FW. DOX administration started 5weeks after the beginning of the exercise protocol. Heart mitochondrial ultrastructural alterations, mitochondrial function (oxygen consumption and membrane potential), semi-quantification of oxidative phosphorylation (OXPHOS) proteins and their in-gel activity, as well as proteins involved in mitochondrial oxidative stress (SIRT3, p66shc and UCP2), biogenesis (PGC1α and TFAM), acetylation and markers for oxidative damage (carbonyl groups, MDA,SH, aconitase, Mn-SOD activity) were evaluated. DOX treatment resulted in ultrastructural and functional alterations and decreased OXPHOS. Moreover, DOX decreased complex I activity and content, mitochondrial biogenesis (TFAM), increased acetylation and oxidative stress. TM and FW prevented DOX-induced alteration in OXPHOS, the increase in oxidative stress, the decrease in complex V activity and in complex I activity and content. DOX-induced decreases in TFAM and SIRT3 content were prevented by TM only. Both chronic models of physical exercise performed before and during the course of sub-chronic DOX treatment translated into an improved mitochondrial bioenergetic fitness, which may result in part from the prevention of mitochondrial oxidative stress and damage.
International Journal of Cardiology | 2014
José Magalhães; Inês O. Gonçalves; José Lumini-Oliveira; I. Marques-Aleixo; Emanuel Passos; Sílvia Rocha-Rodrigues; Nuno G. Machado; Ana C. Moreira; David Rizo; Ginés Viscor; Paulo J. Oliveira; Joan Ramon Torrella; António Ascensão
BACKGROUND Modulation of the mitochondrial permeability transition pore (MPTP) and inhibition of the apoptotic signaling are critically associated with the cardioprotective phenotypes afforded by both intermittent hypobaric-hypoxia (IHH) and endurance-training (ET). We recently proposed that IHH and ET improve cardiac function and basic mitochondrial capacity, although without showing addictive effects. Here we investigate whether a combination of IHH and ET alters cardiac mitochondrial vulnerability to MPTP and related apoptotic signaling. METHODS Male Wistar rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1h/day/5 week treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study susceptibility to calcium-induced cardiac MPTP opening. Mitochondrial cyclophilin D (CypD), adenine nucleotide translocator (ANT), Bax and Bcl-2 protein contents were semi-quantified by Western blotting. Cardiac caspase 3-, 8- and 9-like activities were measured. Mitochondrial aconitase and superoxide dismutase (MnSOD) activity and malondialdehyde (MDA) and sulphydryl group (-SH) content were determined. RESULTS Susceptibility to MPTP decreased in NE and HS vs. NS and even further in HE. The ANT content increased in HE vs. NS. Bcl-2/Bax ratio increased in NE and HS compared to NS. Decreased activities in tissue caspase 3-like (HE vs. NS) and caspase 9-like (HS and HE vs. NS) were observed. Mitochondrial aconitase increased in NE and HS vs. NS. No alterations between groups were observed for caspase 8-like activity, MnSOD, CypD, MDA and -SH. CONCLUSIONS Data confirm that IHH and ET modulate cardiac mitochondria to a protective phenotype characterized by decreased MPTP induction and apoptotic signaling, although without visible addictive effects as initially hypothesized.
Mitochondrion | 2014
Inês O. Gonçalves; Emanuel Passos; Sílvia Rocha-Rodrigues; Cátia V. Diogo; Joan Ramon Torrella; David Rizo; Ginés Viscor; Estela Santos-Alves; I. Marques-Aleixo; Paulo J. Oliveira; António Ascensão; José Magalhães
Exercise is considered a non-pharmacological tool against several lifestyle disorders in which mitochondrial dysfunction is involved. The present study aimed to analyze the preventive (voluntary physical activity-VPA) and therapeutic (endurance training-ET) role of exercise against non-alcoholic steatohepatitis (NASH)-induced liver mitochondrial dysfunction. Sixty male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n=20), standard-diet VPA (SVPA, n=10), high-fat diet sedentary (HS, n=20) and high-fat diet VPA (HVPA, n=10). After 9weeks of diet-treatment, half of SS and HS animals were engaged in an ET program (SET and HET) for 8weeks, 5days/week and 60min/day. Liver mitochondrial oxygen consumption and transmembrane-electric potential (ΔΨ) were evaluated in the presence of glutamate-malate (G/M), palmitoyl-malate (P/M) and succinate (S/R). Mitochondrial enzymes activity, lipid and protein oxidation, oxidative phosphorylation (OXPHOS) subunits, cytochrome c, adenine nucleotide translocator (ANT) and uncoupling protein-2 (UCP2) content were assessed. HS groups show the histological features of NASH in parallel with decreased ΔΨ and respiratory control (RCR) and ADP/O ratios (G/M and P/M). A state 3 decrease (G/M and S/R), FCCP-induced uncoupling respiration (S/R) and ANT content were also observed. Both exercise types counteracted oxygen consumption (RCR, ADP/O and FCCP-uncoupling state) impairments and improved ΔΨ (lag-phase). In conclusion, exercise prevented or reverted (VPA and ET, respectively) the bioenergetic impairment induced by NASH, but only ET positively remodeled NASH-induced liver structural damage and abnormal mitochondria. It is possible that alterations in inner membrane integrity and fatty acid oxidation may be related to the observed phenotypes induced by exercise.
Mitochondrion | 2012
António Ascensão; Inês O. Gonçalves; José Lumini-Oliveira; I. Marques-Aleixo; E. dos Passos; Sílvia Rocha-Rodrigues; Nuno G. Machado; Ana C. Moreira; Paulo J. Oliveira; Joan Ramon Torrella; José Magalhães
Mitochondrial function is modulated by multiple approaches including physical activity, which can afford cross-tolerance against a variety of insults. We therefore aimed to analyze the effects of endurance-training (ET) and chronic-intermittent hypobaric-hypoxia (IHH) on liver mitochondrial bioenergetics and whether these effects translate into benefits against in vitro salicylate mitochondrial toxicity. Twenty-eight young-adult male rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE), hypoxic-sedentary (HS) and hypoxic-exercised (HE). ET consisted of 1h/days of treadmill running and IHH of simulated atmospheric pressure of 49.3 kPa 5h/days during 5weeks. Liver mitochondrial oxygen consumption, transmembrane-electric potential (ΔΨ) and permeability transition pore induction (MPTP) were evaluated in the presence and absence of salicylate. Aconitase, MnSOD, caspase-3 and 8 activities, SH, MDA, SIRT3, Cyp D, HSP70, and OXPHOS subunit contents were assessed. ET and IHH decreased basal mitochondrial state-3 and state-4 respiration, although no alterations were observed in ΔΨ endpoints evaluated in control mitochondria. In the presence of salicylate, ET and IHH decreased state-4 and lag-phase of ADP-phosphorylation. Moreover, ADP-lag phase in hypoxic was further lower than in normoxic groups. Neither ET nor IHH altered the susceptibility to calcium-induced MPTP. IHH lowered MnSOD and increased aconitase activities. ET and IHH decreased caspase 8 activity whereas no effect was observed on caspase 3. The levels of SIRT3 increased with ET and IHH and Cyp D decreased with IHH. Data suggest that ET and IHH do not alter general basal liver mitochondrial function, but may attenuate some adverse effects of salicylate.
Life Sciences | 2015
Estela Santos-Alves; I. Marques-Aleixo; David Rizo-Roca; Joan Ramon Torrella; Paulo J. Oliveira; José Magalhães; António Ascensão
AIMS The effects of exercise on cardiac and skeletal muscle, including the increase on mitochondrial function, dynamics, biogenesis and autophagy signaling are well described. However, these same effects on liver mitochondria, important in the context of hepatocyte ability to mitigate drug-induced injury and obesity-related disorders, are not fully understood. Therefore, the effects of two distinct chronic exercise models (endurance training--ET and voluntary physical activity--VPA) on liver cellular and mitochondrial quality control were analyzed. MAIN METHODS Eighteen male-adult Sprague-Dawley rats were divided into sedentary (SED), ET (12-week treadmill) and VPA (12-week voluntary free wheel). Liver mitochondrial alterations were evaluated by semi-quantification of proteins involved in oxidative stress (SIRT3, p66shc, p66(Ser36)), biogenesis (citrate synthase, PGC-1α and mtTFA), dynamics (MFN1, OPA1 and DRP1) and auto(mito)phagy (Beclin-1, Bcl-2, LC3II/LC3I, p62, Parkin and PINK) signaling. Liver ultrastructural alterations were also evaluated. KEY FINDINGS Both exercise models induced beneficial alterations on liver mitochondrial morphology and increased mitochondrial biogenesis (PGC-1α and mtTFA), autophagy-related proteins (Beclin-1, LC3-II, LC3II/LC3I), and DRP1 and SIRT3 proteins. Increased citrate synthase activity and OPA1, p62 and Parkin content as well as decreased PINK protein levels were only observed after ET. VPA decreased OPA1, Beclin-1/Bcl-2, Parkin and p66(Ser36). Mitochondrial density and circularity increased in both exercised groups. SIGNIFICANCE Both chronic exercise models increased proteins related with mitochondrial biogenesis and alteration proteins involved in mitochondrial dynamics and autophagy signaling, suggesting that exercise can induce liver mitochondrial adaptive remodeling and hepatocyte renewal.
International Journal of Cardiology | 2013
José Magalhães; Inês Falcão-Pires; Inês O. Gonçalves; José Lumini-Oliveira; I. Marques-Aleixo; E. dos Passos; Sílvia Rocha-Rodrigues; Nuno G. Machado; Ana C. Moreira; Daniela Miranda-Silva; Cláudia Moura; Adelino F. Leite-Moreira; Paulo J. Oliveira; Joan Ramon Torrella; António Ascensão
BACKGROUND Intermittent hypobaric-hypoxia (IHH) and endurance-training (ET) are cardioprotective strategies against stress-stimuli. Mitochondrial modulation appears to be an important step of the process. This study aimed to analyze whether a combination of these approaches provides additive or synergistic effects improving heart-mitochondrial and cardiac-function. METHODS Two-sets of rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1 h/day/5 weeks treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study overall cardiac and mitochondrial function. In vitro cardiac mitochondrial oxygen consumption and transmembrane potential were evaluated. OXPHOS subunits and ANT protein content were semi-quantified by Western blotting. HIF-1α, VEGF, VEGF-R1 VEGF-R2, BNP, SERCA2a and PLB expressions were measured by qRT-PCR and cardiac function was characterized by echocardiography and hemodynamic parameters. RESULTS Respiratory control ratio (RCR) increased in NE, HS and HE vs. NS. Susceptibility to anoxia/reoxygenation-induced dysfunction decreased in NE, HS and HE vs. NS. HS decreased mitochondrial complex-I and -II subunits; however HE completely reverted the decreased content in complex-II subunits. ANT increased in HE. HE presented normalized ventricular-arterial coupling (Ea) and BNP myocardial levels and significantly improved myocardial performance as evaluated by increased cardiac output and normalization of the Tei index vs. HS CONCLUSION Data demonstrates that IHH and ET confer cardiac mitochondria with a more resistant phenotype although without visible addictive effects at least under basal conditions. It is suggested that the combination of both strategies, although not additive, results into improved cardiac function.
Brain Pathology | 2016
T.C. Bernardo; I. Marques-Aleixo; Jorge Beleza; Paulo J. Oliveira; António Ascensão; José Magalhães
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Mitochondrion | 2016
I. Marques-Aleixo; Estela Santos-Alves; M.M. Balça; Paula I. Moreira; Paulo J. Oliveira; José Magalhães; António Ascensão
Doxorubicin (DOX) is a highly effective anti-neoplastic agent, whose clinical use is limited by a dose-dependent mitochondrial toxicity in non-target tissues, including the brain. Here we analyzed the effects of distinct exercise modalities (12-week endurance treadmill-TM or voluntary free-wheel activity-FW) performed before and during sub-chronic DOX treatment on brain cortex and cerebellum mitochondrial bioenergetics, oxidative stress, permeability transition pore (mPTP), and proteins involved in mitochondrial biogenesis, apoptosis and auto(mito)phagy. Male Sprague-Dawley rats were divided into saline-sedentary (SAL+SED), DOX-sedentary (DOX+SED; 7-week DOX (2 mg · kg(-1)per week)), DOX+TM and DOX+FW. Animal behavior and post-sacrifice mitochondrial function were assessed. Oxidative phosphorylation (OXPHOS) subunits, oxidative stress markers or related proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α and TFAM) were evaluated. Apoptotic signaling was followed through caspases 3, 8 and 9-like activities, Bax, Bcl2, CypD, ANT and cofilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin and p62)-related proteins were measured by semi-quantitative Western blotting. DOX impaired behavioral performance, mitochondrial function, including lower resistance to mPTP and increased apoptotic signaling, decreased the content in OXPHOS complex subunits and increased oxidative stress in brain cortex and cerebellum. Molecular markers of mitochondrial biogenesis, dynamics and autophagy were also altered by DOX treatment in both brain subareas. Generally, TM and FW were able to mitigate DOX-related impairments in brain cortex and cerebellum mitochondrial activity, mPTP and apoptotic signaling. We conclude that the alterations in mitochondrial biogenesis, dynamics and autophagy markers induced by exercise performed before and during treatment may contribute to the observed protective brain cortex and cerebellum mitochondrial phenotype, which is more resistant to oxidative damage and apoptotic signaling in sub-chronically DOX treated animals.